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Abstract:

The definition of Instrumental Weighted Variables (IWV) (which is a robust version of
the classical Instrumental Variables) and conditions for the weak consistency as given
in the Part I of this paper are recalled. The reasons why the classical Instrumental
Variables were introduced as well as the idea of implicit weighting the residuals (firstly
employed by the Least Weighted Squares, see Visek (2000)) are also recalled. Then

Jn -consistency of all solutions of the corresponding normal equations is proved.
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INTRODUCTION

The paper continues in studies of Visek (2006b). That it why we recall reasons for introducing the
Instrumental Weighted Variables as well as for employing the idea of implicit weighting residuals,
as firstly used in Visek (2000), only briefly. Nevertheless, we will do it in a way to make the paper
self-contained.

Let N denote the set of all positive integers, R the real line and RP the p-dimensional Euclidean
space. We are going to consider the linear regression model given as

p
Vi=X{+e=Y XyB +e, i=12..,n (1)
j=1

Without loss of generality we may assume that 50 = 0, but 8 — 89 is written instead of just /3
when we deal with 3 from the neighborhood of the true value 4°. The following conditions are
assumed to be fulfilled.

C1 The sequence {(XT

70

ei)T}il s sequence of independent and identically distributed p + 1-
dimensional random vectors (i.i.d. r.v.’s) with absolutely continuous distribution function Fx ((x,v).
Moreover, IE {(XlT,e)T . (XlT,e)} is positive definite matriz and the density fo x(v|X1 = z) is
uniformly in x bounded in v, say by U,.

Fx(z) and F.(v) (fx(z) and fe(v)) will stay for the marginals of Fx ¢(z,v) (and their densities,
respectively). (Throughout the paper all vectors will be assumed the column ones.) Finally, notice
please that f.(v) = IE, fo(v| X1 = 2) < [E U, = Uk.

We shall study the model with intercept, i.e. we assume that the first coordinate of explanatory
variables X; is degenerated and equal to 1.

ESTIMATING BY MEANS OF INSTRUMENTAL VARIABLES

The most frequently used estimator of the regression coefficients 3° of the “true” underlying model
is the (Ordinary) Least Squares 3°FS™) . Due to the fact that

-1
A 1& 1 & 1 &
B(OLS’R) =3+ (n E XkX,'€> - E X;e; and nh—{goﬁ E X,e; = IEX1e; in probability,
k=1 i=1 i=1
(2)

one easy verifies that the violation of orthogonality condition IF {e;|X;} = 0 implies inconsistency
of the (Ordinary) Least Squares (where due to C1 L 37}, X} X is, starting with some ng (say),
positive definite almost surely).

One of the best known example of the situations when the orthogonality condition fails, was
discussed in the first part of these three papers ( Visek (2006b)). We are going to recall another
famous example justifying employment of the method of instrumental variables. The model, we
will consider, is not a special case of (1). When we arrive at (4), we can easy verify that the rows
are correlated and we have to use a transformation of Cochrane-Orcutt (see Cochrane, Orcutt
(1949)) or Prais-Winsten type (see Prais, Winsten (1954)) to fulfil assumptions of the model (1).
However, it would bring a large notational complexity (although it represents only a technical
problem) and it may obscure the idea of the next example. So let us consider (with a bit of



freedom from the rigor) the model with lagged explanatory variables. Assume the simplest one,
with the geometric structure of coefficients, i. e.

(o ¢]
Vi=y> Nz jp+e, t=..,-1,012,..T (3)
j=1

with IEe; = 0 and IFe? = 02 € (0,00). Clearly, we are not able to estimate coefficients v and A,
so writing model for ¢t — 1

o0
YVia=y> Nl j+e,
=1

multiplying it by A and subtracting from (3), we obtain
Y =AY + v+ e — Aep—1 = AV + vy + wy. (4)

Now, the “explanatory” variable Y;_; is correlated with the error term u; and then (2) indicates
that OLS estimate of regression coefficients of model (4) is inconsistent.

Another frequently presented example considers the situation when the explanatory variables
are measured with a random error, see Judge et al. (1985) or Visek (1998), (2006b).

The classical econometrics solve such situations usually by means of the Method of Instrumental
Variables.

Definition 1 For any sequence of random vectors {Z;};°, C RP the solution(s) of the (vector)
equation

Z; (Y - Xfﬁ) =0 (5)
i=1
will be called the estimator obtained by means of the method of Instrumental Variables (or Instru-
mental Variables, for short) and denoted by gV

The method became at the end of the last century more or less a standard tool in many case studies
of panel data since the correlation of explanatory variables and disturbances frequently appeared.
Papers exploring the best way of the selecting the instruments for explanatory variables established
useful, easy implemented results, see e.g. Arellano, Bond (1991), Arellano, Bover (1995) or Sargan
(1988) (and for examples of implementation see for SAS - Der and Everitt (2002), for R and S-
PLUS - Fox, J. (2002)).

RECALLING THE LEAST WEIGHTED SQUARES

Let us enlarge a bit the notations. Let us denote for any 5 € RP by r;(8) = Y; — X3 the i-th
residual and by T(Zh) (8) the h-th order statistic among the squared residuals. To be more explicite,
we have

iy (B) <1l (B) < oo <1l (8). (6)

Then the Least Weighted Squares can be defined as follows (see Visek (2000), see also (2002b, ¢)):
BUWSnw) —  argmin wirky (8 7

il ; @ (B) (7)



where w;,i = 1,2,...,n are weights'. They are usually generated by a weight function with the
following properties?:

C2 Weight function w : [0,1] — [0, 1] is absolutely continuous and nonincreasing, with the deriva-
tive w' () bounded from below by —L, w(0) = 1.

Then put w; = w (%) Following Héjek, Sidék (1967) for any i € {1,2,...,n} let us denote by
7(B,4) the rank of the i-th residual. It means that 7(3,i) = j € {1,2,...,n} iff r}(3) = T%j)(ﬁ)
(notice that 7(3,1) is r.v.). Then we have

BEWSnw) _ argmin zn:w (W(ﬁﬂ') - 1) 2(8). @®)
BERP =1 n '
It is straightforward to show that the Least Weighted Squares are solution of normal equations
" w(B,i) — 1
NExa(8) = Yu (ME0=0) xi (v - xip) <o )

see Visek (2006b).
INSTRUMENTAL WEIGHTED VARIABLES

The inconsistency of the Ordinary Least Squares which is due to the failure of the orthogonal-
ity condition (as we recalled it in INTRODUCTION), takes place generally also for the Least
Weighted Squares. That is why we define an estimator which will be an analogy of the estimator
obtained by the Method of Instrumental Variables but which will weight down the residuals of
those observations which seem to be atypical. For complex discussion see Hampel et al. (1986) or
Rousseeuw and Leroy (1987).

Definition 2 For any sequence of random vectors {Z;};=, C RP the solution(s) of the (vector)
equation

NEz() =S w (") 7 - x1) =0 (10

i=1 n

will be called the Instrumental Weighted Variables estimator and denoted by B(IWV’”’“’).
Remark 1 The elements of the sequence {Z;};2, are usually called instruments. Without loss
of generality we may assume that Z;; = 1 and IEZ;; = 0,5 = 2,3,....,p and i = 1,2,.... We do
not lose gemerality firstly, due to the fact that Z;7 = 1 represents constants and hence they cannot
be correlated with disturbances (in fact we have then Zj = X;1). Secondly, what concerns the
assumption that IEZ;; = 0,5 = 2,3, ..., p, if it would not be fulfilled, we can “move” IEZ;; into the
intercept of the original model (1).

For any 3 € RP the distribution of the absolute value of residual will be denoted Fjg(v). In other
words,

Faw) = P(¥i = Xi5] < 0) = P ([er = X (8- 5°)| < ). ()

!See also Cizek (2002) where the estimator is called the Smoothed Least Trimmed Squares.
2Compare Héjek, Sidék (1967).



Similarly, for any 8 € RP the empirical distribution of the absolute value of residual will be denoted
Fm (v). It means that, denoting the indicator of a set A by I {A}, we have

8
Zf{m )| < v} = Zf{yej—xgm <v}
nis

1 n
:ﬁZI{weQ :ej(w) — X (w) B <v}. (12)
=1
It is straightforward that then (for details see Visek (2006b))

FO () = 2D 1

n

and so (10) can be written as

>ow (FY(ri(B)))) Zi (Y: - Xi8) = 0. (13)
=1
CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

We will need also the following notation. For any 3 € RP the distribution of the product 3'ZX'j3
will be denoted Fjgrzx/g(u), i. e.

Fyzxp(u) = P(B'ZX'B < u) (14)

and similarly as in previous, the corresponding empirical distribution will be denoted F 5(2 X7 B(u),
so that

F§g(u ZI{ﬂZXﬂ<u} Zl{weQ L BZX)B <u}. (15)
i
For any ¢ € RT and any a € R put
Va = I\ZTPC Fgzxp(a). (16)

Notice please that due to the fact that the surface of the ball {5 € RP, ||3|| = ¢} is compact, there
is 8, € {# € RP,||B]| = ¢} so that
Vo = Fazxp,(a). (17)

For any ¢ € R™ let us denote

T =— ||5ﬂl£<ﬁ IE[Z,X} - I{#'Z, X3 < 0}] 8. (18)

Notice please that 7. > 0 and that again due to the fact that the ball {3 € RP,||B]| < (} is
compact, the infimum is finite, and hence there is a § € {5 € RP, |||l < ¢} so that

7 =-BIE [Zl)q B2 X|B < 0}} 3. (19)

4



C3 The instrumental variables {Z;};°, C RP are independent and identically distributed with
distribution function Fz(z). Moreover, they are independent from the sequence {e;}:2,. Further,

the joint distribution function Fx z(x, z) is absolutely continuous, IE {w(Fﬁo(|€1|))ZlX1T} as well

as IEZ1Z{ are positive definite (one can compare C3 with Visek (1998) where we considered
instrumental M -estimators and the discussion of assumptions for M -instrumental variables was
giwen) and there is ¢ > 1 so that IE{||Z1] - || X1||}? < oco. Finally, there is a > 0, b € (0,1) and
A >0 so that

@ (b—a) - w(b) > 7y (20)

for vxq and T given by (27) and (38).

Remark 2 Let us briefly discuss assumptions we have made. Let us recall that the Least Squares
(B(LS’”)) are optimal only under normality of disturbances. Here the optimality means that they
reach the lower Rao-Cramer bound (in multivariate Rao-Cramer lemma we consider the ordering
of the covariance matrices in the sense of ordering the positive definite matrices).On the other
hand, a small departure from normality may cause (and usually does) a large decrease of effi-
ciency (see e.g. Fisher (1920), (1922)). So, without the assumption of normality of disturbances
B(LS’”) is much worse, in fact they are the best unbiased estimator only in the class of linear
unbiased estimators, for a discussion showing that restriction on linear estimators can be drastic
see Hampel et al. (1986). Sometimes, however we may meet with the statement that we do not
need necessarily the normality of disturbances, just because B(LS’”) is still (without normality) the
best unbiased estimator in the class of linear unbiased estimators. And the restriction on the class
of linear unbiased estimators is justified by a claim that we have to restrict ourselves on the class
of linear estimaors, as in the the class of linear unbiased estimators, the estimators are scale-
and regression-eqivariant. Let us recall that having denoted M (n,p) the set of all matrices of type
(n x p) and recalling that the estimator B can be considered as a mapping

~

B, X): M(n,p+1) — R,

the estimator ﬁ of BY is called scale-equivariant, if for any ¢ € RT)Y € R" and X € M(n,p) we
have

B(eY, X) = cB(Y, X)
and regression-equivariant if for any b € RP)Y € R" and X € M(n,p)

BY + Xb, X) = B(Y, X) +b.

But, there are a lot of nonlinear estimators which are scale- and regression-equivariant. In the
regression framework, the estimators as the Least Median of Squares, the Least Trimmed Squares
or the Least Weighted Squares can serve as examples (for an interesting discussion of this topic
see again Hampel et al. (1986), and also Bickel (1975) or Jureckovd and Sen (1993)).)

Since LWS are also based on La-metric, we guess that they are approzimately optimal for finite
sample sizes under the (approrimative) normality of disturbances, for some hint consult Masicek
(2003). As the present proposal of robustified instrumental variables is based on the same metric
(due to the normal equations (10)), we can expect that the estimate can be approzimately optimal
under (approrimative) normality of disturbances. But then our assumptions seem to be quite
acceptable.



The only assumption which deserve further discussion is the assumption (41). We are going
to show that it is a restriction on the weight function w. Let us return to (27) (or to (29)). We
have

Ta = Farzxrs (@) = P (B 2.X[ 8, <0) + P (0 < Bl 2:X '8y < a) .

If we assume for a while Z; = X, for any fit A € RT we have

a—00

but for v, we have (again for fit A € RT)

lim Fygrzyrg (a) =P (ﬁATZleTﬂA < 0) : (22)

a—00

On the other hand, for any a > 0 we have

Tra < 1. (23)

Now let us turn to 7. As
IE ’ﬁTZleTﬁ’ <|BIP E {2 1X2 01} < 1812 B {1 Z0]| 1| X1 [} < o0,

we have
limsup | 871 [ X 1{87 2: X[ 8 < 0}| 8 = 0. (24)
[18]1—0
In other words, T can be done arbitrary small (just selecting X\ € R so that ||\|| is small). It
says that if w(b) = 1, there is b € (0,1) > x4 (even for any a > 0). It means that (21), (22),
(23) and (24) indicate that (41) can be always fulfilled but we may have restricted possibility to
depress the influence of “bad” observations.

C4 The vector equation

BT [w (Fy(|Ir1(B)) Z1 (e1 — X{B)] =0 (25)
in the variable B € RP has unique solution B = 0.
~ o0
Lemma 1 Let the conditions C1, C2, C3 and C4 be fulfilled. Then any sequence {IB(IWV,n,w)} )

of the solutions of normal equations lNEzyn(ﬂA(IWV’”’“’)) =0 (see (10)) is weakly consistent.

For the proof see Visek (2006b).

/n-CONSISTENCY OF THE INSTRUMENTAL WEIGHTED VARIABLES

We will need to enlarge the previous conditions.

NC1 The density fex(r|X1 = x) is uniformly with respect to x Lipschitz of the first order (with
the corresponding constant equal to B.). Moreover, f.(r) exists and is bounded in absolute value
by U!.

NC2 The derivative w'(c) of the weight function is Lipschitz of the first order (with the corre-
sponding constant Jy, ).



Lemma 2 Let the conditions C1, C2, C3, C4, NC1 and NC2 be fulfilled. Then any sequence
{B([WV’"’“’)} . of the solutions of normal equations (10) (or (13)) INEy,(8UWVmw)) = 0 is

n—=

\/n-consistent.

Proof:

Throughout the proof for any r, s € R we shall denote by [r, s],,;, = [min{r, s}, max{r, s}] and the
same will be true for any other type of intervals, i.e. (r,s),.;, (7, 5] 4 and [, 5),,4-

Let us recall that UWVmw) i given as solution of (13), i. e. as solution of the equation

n

Sw (FS(1r(9))) Zi (v; — X16) = 0.

i=1
Rewriting it, we obtain
n 1 “ n /
Z (B8 Zies = > w (B ((B))) 2iX] - v (B=8°) . (26)
=1

Since w’ is bounded from below by —L,,, we have

w (FIOD) = v (Faln(9))] < L sup su |7

sup
BERP

F{ () = Fy(v)].

Then according to Lemma A.1

Zn: [ ( (i )D) - w(%(h‘i(ﬁ)’))} Zie;

=1

— sup

\f N BeRp

sfsupZ\w( (rs(B)D) =w (Fa(ri(B))| - 12| - led

T BeRrp

<\Vn-Ly- sup sup
vERT PERP

F ) - By - 23012 e = 0,0
=1

aa n — oo. Hence (denoting X = (X1, Xs,....X,,), Z = (21,22, ..., Zy,) and e = (e, €9, ...,e,)" )

Z ( \n \)Zez— Zw (Es(|ri(B ) Zies + RV (8, X, Z, ¢) (27)

where

sup
BERP

and Op(1) is to be understood in the sense that

RD(B, X, Z,e)|| = 0,(1)

V(e >0) (K. <o0) inf P <{w €Q : sup
neN BERP

RW(B, X, Z, e)H < K€}> S1—e  (28)

Notice please, that to keep equality in (27), Rgl)(ﬁ, X, Z, e) does have to depend on 3, X, Z, e and
on n. Similarly

5 [ (F20r(0D) - w (Falir(0)))] 2.,

i=1




<L sup S (B0 - w (Fatir (D) 122010

N geRr;

1 (n) 1 &, ne
< ﬁ{Lw‘ sup sup i |F <v>—Fﬁ<v>\-ni§;nZzn~\in} = op(1)

vERtT BERP

as n — 0o. Hence

wa(F(" (Ir:(B )ZX’ Zw Fs(|ri(B)])) Z: X! + RP(B, X, Z, e) (29)
=1
where
sup [RP (5, X, Z,e)| = 0,(1)
BERP

and op(1) is to be understood in the sense that

V(e >0,6>0) F(npeN) Y(n>ng)

P ({w e : sup

BERP

Notice please, that again to keep equality in (29), Rg) (8, X, Z, e) does have to depend on 3, X, Z, e
and n. Finally, (26), (27) and (29) gives

RY (3, X, Z, e)H < 5}) >1—e. (30)

i o ) Zie+ BD(6. X, 2,0

= 3w (Fsri(@)D) ZiX] + P (3, X, Z,)| -V (6~ 7°) (31)

i=1
Further, let us make some preparatory considerations. Let us recall that by C1

Fg(v) =P (’61 - X1 (ﬂ - 30)’ < U) = /{|rx/(ﬁ /<o) fxe(x,r)de dr

vta’ (3—p0)
_ / l / Fax (r X3 :a;)dr] Fx(@)dz

—v+a’ (3—50)

Now, for any 8 € RP we have
F(v) = Fipo(v)

- /°° l/v—&-x'(ﬁ—ﬂo) fex(r| Xy = x)d?“} fx(z)dz — /_O:O { _UU foix (r| X1 = x)dr} fx(x)dz

—o0 | J—vta’ (850

v4a’ ,B ,BO) v
- [ / Fox(riX = 2)dr = [ fxlriXs = x)dr] fx(@)d

vt (B—p0)

= /00 l/—v+r (ﬁ_ﬁ ) e|X( ‘Xl — x)dr B /U+x (5_5 )fe\X(T|X1 = z>d1;| fX($)dl‘

—v v

) / /—v—i-m 5-5°) fa 1, = 2)drfx (@) - /_o; /vv+:c (6-6°) fox (7| X1 = 2)dr fx (z)dw
(32)



(where the lower and upper bounds of the integrals should be changed if necessary). Now let us
consider the first term of (32). It can be written as

oo —v-i—x’(ﬁ—ﬂo)
/ l/ Jeix (—v| X1 = x)dr] fx(z)dx (33)

— 00 —v

+/ {/—v-‘rx B—3) [felx(r\Xl =) — fex(—v[X1 = :c)} dr} fx(z)dz. (34)

Now for r € [—v, —v + 2/ (8 — °)]

ord

fax(r|X1 = 2) = fax(~o|X1 = 2)| < Be- [’ [5 - 57|

where B, is given in NC1. Then we have for (34) the bounds

—vta' (B-6°)
’/ / fe\x(r|X1 =) — fox(—v|X1 = g;)} drfx(z)dax

SBe'/

—v+a'(8—8°)

o=l | [

—v

fx(x)dz = B, - / (6] Fx(a)de

< Be- By, X1 |5 - 5° - (35)

Notice that the upper bound does not depend on v, i. e. the inequality holds for all v € R (for
v € R~ we have Fz(v) = 0 for any 8 € RP). Moreover for (33) it holds

e —U-HC'(ﬁ—IBO)
/ l/ feix (—v| Xy = x)dr] fx(z)dz

— 00 —v

_ /_ O:O [fdx(—v\Xl — ) / Tre(ep )dr] fx(@)dz

—v

- /O:O [felX(—U|X1 = z)2’ (ﬁ - ﬁo)} fx(z)dz = [Ex, {fe|X(—v|X1)X{} {ﬁ - 50} _ (36)

Deriving analogical inequalities as (35) and (36) for the second term of (32), i. e. analogies for

/_O:o /UU”/(B_ﬁO) {fe\x(r|X1 =1z) = fex (0] X1 = x)} drfx(z)dx

and for

[e'e) y+$/(5_50)
/ l/ﬂ fe|X(U‘X1 = w)d?“] fX(-%')d.%'

— 00

we arrive at

Fy(v) = Fyo(v) — [Ex, { fux(~0lX1) X} }

sup
vERT

~Bx, {fax o) x1)] [5- 9



2 2
<2B. - Ex, X |8 -8 = o8-8 as 58— 5" (37)
The last inequality also implies that

sup ‘Fg — Fpo(v ‘ Hﬁ ﬁOH (38)

vERT

in this case in the sense

(K < o0) sup sup ‘Fﬁ(v) _ FﬁO(U)’

<K (39)
serr ver+ 18—

(keep in mind that for v <0 Fg(v) = Fgo(v) = 0). Now, let us modify (31) as follows

E]M%%wm—w@mmwm&wm%iw@meﬁﬂwﬂ (8, X, Z,¢)
=1

1
= L5 [w B m)) — w (Fnr(@)D)] - 21 v (8- )

+ fﬁ%%mmmmzx+3<ﬂxza]v%@—m) (10)

To be able to treat the terms in (40) let us consider
w (Fa(ri(8))) = w (Fao(Irs(B))) = (&) [Fa(lri(B)]) — Ego(Iri(8)])]
= [0/(&) =0 (Fpo(ri(B)))] - [FsIra(B)]) = Ego(Iri(8)))]

! (Fan(r(B)) - [Fallri(B)]) — Fao (ra(8)])] (41)

where &; € {Fg(lri(ﬂ)\),Fﬁo(]ri(ﬂ)\)] . Moreover, using J,, from NC2

ord

/(&) = w' (Fpo (Ira(B))| - [FaIr(B)]) = Fpo(Iri(5)])]

< T [Fsri®)) — Fpo(ri(8)))]”

< Ju- sup [Fa(o) = Fp ()] = 0(|s - 5°|) (42)

vERT
where the last equality is due to (38). Notice that, although the left-hand side of (42) is random,

2
the last but one expression - J, - sup,cp+ [Fﬁ(v) — Fpo (U)} is not random. Hence the upper

bound in (42) holds almost surely. It means that, taking into account (41) and (42), (40) can be
rewritten as

\fzj (Fn (1)) - [Fallri(8)) = Fn (s3] + B (5. X, 2.0)} Ziey (13)

i (FBO |Tz )) Zie; + Rg) (ﬂv Xv Zv 6) (44)

1

[es}



n

= 23 {w Ep @) - [Fallr(D)D) ~ Fllra())]

i=1
HRD(B.X,Z,0) b 2X] i (5 - 1) (45)
1
" (Fﬁo(|ri(ﬂ)])) Z:; X!+ R (8, X, Z, e)] -\/ﬁ(ﬂ—ﬁo) (46)
i=1
where
sup (ﬁ,X Z,e ‘ Hﬁ ﬁOH and  sup (ﬁ X, Z,e ) Hﬂ ﬁOH (47)
BERP ﬁeRP
Here the previous two expressions O(||8 — 50H2) mean that
) R (8, X, 2,¢)]
J(K < o0) sup sup sup <K k=3,4 a.s. (48)
neN ieN gere |3 — B

although R (ﬂ X, Z,e) are random variables (see agam (42) and the comments which follow).
Let us con51der (43), at first the “second term”, i. e. % iy Rg; (8,X,Z,e)Zie;. We have

ZRm (B, X,Z,€)Ze;

= i[5 = - 03— D2 S 12l -les
=1

—l—#]- oo

The same is true about the “second term” in (45), since
iéRé‘?(ﬂ, X z,07X <K |50 z_; 12i]- 10 = Oy} = 8°))).
So, the relations given between (43) and (46) can be modified to
5 S0 En ) - [Follr0)) ~ Pl -2 9)
+ S (Faln(@) et RYEX.Z0) G0)
= S En ) [Ell9)) ~ Er ()] 2061 (5 ) o1

[ i (Fo(ir(BD) Z:X5 + B <ﬂXZe>+R<5><5XZG>]ﬁ(ﬂﬁ°) (52

where for R )(ﬁ, X, Z,e) see (29) and (30) and again

HRS’) (8, X, Z, e)H
sup

e oW 9

11



in the sense of (48). Now, we are going to study (49), (50), (51) and (52) one by one.

Recalling that, according to (11), Fgo(v) = P(|Y1 — X{8°] <v) = P(le1| < v) = P(—v < e1 < v),

for any pair vy,vs € R, assuming that 0 < vy < v9, we have

Fao(va) — Fo(v1) = P(le1] < w2) — P(le1] <wv1) = P(~v2 <er < —v1) + P(v1 < e1 < vg)

<2-B.-|vg — v
(for B see NC1), so that

|Ean(ri(B) = Fpo(ri(8%)| < 2+ Be - 1%, - 8= 8°)
and, due to NC2 and the fact that ‘]a| - \b\] <la—b
[0/ (Fpo(7:(8)))) = w' (Ego (Irs(8))| < - Be - | Xall - |8 = 8%
It means that, employing also (38),
[/ (Fpo([7:(8)))) = w' (Ego (Irs(8)D)] - [Ea(Iri(B)]) = Fao (rs(A)])|

w' (Fpo([ri(B)])) — w'(Fgo (|r3(8°)]))

: Uselgl ‘Fg — Fo (v)‘

< Ju-Be- 1%l || - 8°

vERT
Let us again repeat that, denoting
RO(B) = Ju- Be- |3 8| - sup |Fa(v) = Fao(v)],
veR*
the last equality in (56) means that:
500)

(K <o0) sup sup ——
neN perr |5 — 60"

Finally,
W' (Epo(|ri(B)) - [Fa(Iri(B)]) — Fao(|ri(8°)))]

= W' (Epo(Ir:(8°))) - [Ea(|ri(8)]) = Fao(|ra(B))] + 1] - RS (8)

where ‘Rg)(ﬁ)‘ < ‘R%G)(ﬂ)’ for any 3 € RP, i. e.
sup ’Rn ’
ser 16— 5O

again in the sense described in (48). Hence (49) can be written as

= 0(1),

2:{ (Fao(Iri(8)) - [Fa(lri(B)]) = Fpo(Ira(®D] + 1%l - R (8) } - Zies.
=1

12

2
- sup |Fy(v) = o (v)| = 1] - O(|8 = 8| ).

(54)

(56)



LS~ uxl- 120 - el - of . B (B)
77 2 Il 2l e R{ ZHX 1 1Zll - led - /7 8= 8] - 7o Hﬁ 50”

taking into account (57), we can finally write (49) as

Z{ (Fgo(lei)) - [Fa(r() — Fso(ri(B))| } - Zi e +v/n (8= 8°) - RO (B, X, Z,e) (58)

where

$(8,X,2,)|
sup
sere 16 —=5°

of course again in the sense described in (48). Now, recalling that

= OPU‘)?

Ex, {fe|X( | X1) X1 / feix (0| X1 = z)x fx (x)dz

and the fact that f,x(v|X1 = z) is Lipschitz (with the corresponding constant B, see NC1), we
easy verify that

= H /_O:o [fe|X(U1!X1 =) — fex(v2] X1 = 95)} e fx (z)dx

H]Exl {feIX(v1!X1)X1} — [Ey, {fe|X(U2!X1)X1}

< Be-for— | [~ afc(@)da] = Be- o~ vl - Ex, |15
and hence
\ (B, { fex (ri(B)1X0) X1 | = B, { fox (ri(8)|X0) X1} - [8 - 8]
< B By, {|r(8) — ()| 1%} - 8- 87 < Be - Bx, 13002 )5 - 69

Together with (37) the last equality implies that

Fars(9) = Fin(r3(0)) = [, {Fuxc(-eil0) X1}

—IEx, {feX(ei|X1)X{}} [5 - ﬂo}

<4 B.max{IEx, ||X1||2,1}-Hﬁ—ﬂoH2. (59)

So, we found that (49) is equivalent to
1 n
7 2w/ Elled)) [Exl {fax (el X)) X1} — Bx, {fox (el X)X | ] (8= 8°] Zive:
=1

+RO(B, X, Z,e)n 8- 8] (60)
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where again

\R“” 8,X,Z, e)]
sup
sere 16— P

in the sense of (48). That concludes the considerations about (49).

= OP(1)7

Let us turn to (50). Recalling that r;(3) — r;(8°) = X! (8 — 8°), r:(8") = e; and that
Fao(v) = Fe(v) — Fe(—v),

we have

Ego([rs(A)]) = Fao (Ir:(8°)])
= F.(ri(8)) = Fo(=ri(8)) = Fo(ri(8))) + Fu(—7:(8"))
= (Flrst8) = Feleri(8) - ((8) = ri8%)) + 5.5260) - (re9) — ()’
= (felen) — fel—e)) - X0 (5= 8°) + 5. 70060) - [x¢ (8- 0°))

where 6; is an appropriate point from [r;(3),7;(8°)],,,- Since | f4(v)| is bounded by U (see NC1),
we have

En(lri(B)) — Fyoleah) — (foles) — ful—en)) - X[ (8- 8°)| < UL- |- 8 61)

and also

Fgo(|ri(B)]) = Epo(les]))
(for U, see C1 and the remark below C1). Then

[w (Ep(r(B))) = w (Epo(r(8)) | - Ziei = w' (&) (Fao (Irs(B)]) = Fao (Irs(8°))) - Zie

<Ue- | -||8 - 8 (62)

= [w/(&) =/ (Epo(Ir(B)))] - (Foo(rs(B)) = Ego(|ra(8))) - Zies
+w' (o (|rs(8°))) (Fao (Irs(B)) = Ego(Ir(8))) - Zies

where &; is again an appropriate point from [Fﬁo(\n(ﬁ)\), Fﬁo(\n(ﬁo)])} ’ Due to (55) and (62),
o7
we have

(&) = w' (Fo (i (8)]))] -

and hence, due to (61),

Fgo(ri(B)]) — Fpo(|ri(B ‘—J B.-U.- || X2 Hﬁ ﬂOH

1
Vn

i[ (Bso(|ri(8)))) = w (Ego(7:(8°)))] - Zies

=1

z": (Epo(lei])) [(fe(ei) _ fe(_ei)> X! (5_50)] Ziei+ RJ9 (8, X, Z,e) v (5 - )
= (63)

14



with supgepe ‘R (10) (6,X,Z,e) ‘ =0, (|8 - ,BOH) again with the sense described in previous. It
implies that (50) can be written as

=3 (B i) + 0/ Eea) [ (e = e -0 (5 - )]} - 2

=1

1
vn

+ RUV(B, X, Z,e)v/n (8- 7). (64)

So, we may conclude the considerations about (49) and (50) and to write them as the sum of three

terms, namely
1 n
—\/ﬁZw (Fﬁo(|61’)> . Ziei, (65)

=1

i (Fao(le) { (fele = (e ) - x|

+ {Exl {fe|X(—€i\X1)Xi} — IEx, {fe|X(6i|X1)Xi}} } {ﬂ - 50} Zie; (66)

and
RO(B,X,Z,e)+ RIV(B, X, Z,e) (67)
where
‘R(g)ﬁXZe‘Jr‘R(lOﬂXZe)‘ o0
sup = 1
BeRp 18— B2 P

in the sense of (48). Moreover, (66) can be written as follows.

jﬁ gw’wgo(mm { foler) = B, {Fuxlei 01}

_ |:fe(_€i) — EX1 {feX<_ei’X1)X{}:| } . (ﬁ — ﬁo) - Ze;. (68)

Notice that due to CLT, (65) is Op(1). Further, let us recall that under the assumptions of the
lemma, ﬂA(IWV’"’“’) is consistent, i. e. “B(IWS’”’w) — ﬂOH = 0p(1), see Lemma 1. Then plugging

BUWSnw) into (67) and (68), we find that both expressions are 0,(1). Finally we conclude that
when plugging in left hand side of normal equations 3U/WVm®) we get O,(1).

Let us continue with (51). We have

U3l (Fp (B - [Fallrs())) ~ Faollrs(0))]
i=1

n

= %Z (W (Ego(Ir: (B))) = ' (Fao(|ei]))] - [Fallri(B)) = Fpo(lra(A))]

1=1

+- zw (Ego(lei])) - [Fs(lri(B)]) — Fpol|ri(B)))]

=1

15



and since, due to (38), (55) and due to existence of IE|X1]|,

U3 [ o 8)D) — ' Fnleal))| - | Falre8)]) — FaolIrs())
i=1

_ii (Eso(|ri(3 r>>—w’<Fﬁo<|e@-|>>-vs5__€g ]FMv)—Fﬁo(v)
<y Be- 8= 8%+ sup |Fa(v) = Faow ZHX I,
we have (for K see (39))
ifj (@ (Ego(Ir: (B))) = ' (Fao(|ei]))] - [Fallri(B)) = Fpo(lra(B))] - Zi - X
1=1
< du-Be- K- [Jp =] sup [Po0) = Pntw)] - 101240 = O - 2]

again in a uniform sense described in (48). Hence (51) can be written as
1 n
2 (Fllei)- [Bs(lrs(@)) = Fao (Irs(B)])| ZiX] + RID(B, X, Z, ) (69)

where supge gy {HR 11) (B,X, 2, e)H . Hﬁ—ﬁOH_Q} O,(1) (again in the previously explained
sense). Taking into account (37), we conclude that (51) can be written as

{i 3 (' (Bgo(lea)) - [Bx, {fox (—0lX1) X1}

=1
~Ex, { fuxwIX0) X1 || - ZiX[} |8 - 8°] + R(P(8. X, 2, e>} Vi[85 (70)

where again supge e {HR(12 (6,X,Z,e H |8 - ﬁOH_z} = Op(1). It remains to study (52). Along
similar lines as in previous we arrive at
1 n
[n > w(Epo(le)) Z:X] + R (8, X, 2, e)] NACENS (71)
i=1
. (13) 011—2 . .
where again supge e {HR" (6, X, Z, e)H 18 =62 } = Op(1). Now, taking into account (70)
and (71), we conclude that (51) and (52) can be given for § = fUWVT:w) 49

4 Z (Fgo les) ) )) Z:X! - /n <B(IWV,T,w) _ 50) + R5L14) (B(IWV,T,w)7X’ Z,e)

with SUpPge rp

(B UIWV.Tw) X 7 e H . Since

Xn:w (Fﬁo les) ) )) Z: X] (72)

=1

3\*—‘

converges in probability to a regular matrix, taking into account (65), (66), (67), (70) and (72)
and employing Lemma A.2, we conclude the proof of the present lemma. a
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Appendix

Lemma A.1 Let the conditions C1 hold and fix arbitrary e > 0. Then there is a constant K < oo
and ne € N so that for alln > n.

P <{w €Q: sup sup \/ﬁ‘Fﬁ(n)(v) — Fﬁ(v)‘ < K}) >1—e. (A.73)

veERT BERP

For the proof of lemma see Visek (2006a).

i=1,2,...,
Lemma A.2 Let for some p € N, {V(")}OO Y = {vz@)}? " be a sequence of (p X p)
n=1 7 Ji=12,...p

matrizes such that fori=1,2,...p and j =1,2,....,p

lim v( ) = ¢j in probability (A.74)
n—oo
where Q) = {q,]}i 11’22’ “Pis a fized nonrandom reqular matriz. Moreover, let {9(”)}00 ) be a
n=

sequence of p— dzmenszonal random vectors such that
3(e>0) ¥ (K >0) limsup P (0™ > K) > e
n—oo

Then
3(6>0) V(H>0)

so that
limsup P (HV(”)H H > H) > 0.

n—oo

Proof: Due to (A.74) the matrix Yn) s regular in probability. Let then 0 < A1, < A9y < ... <
Apn and Zin, Zon, ..., Zpn be eigenvalues and corresponding eigenvectors (selected to be mutually
orthogonal) of the matrix [VM™]TV™) Let us write §() = E§:1 ajnzjn (for an appropriate vector
an = (A1n, Q1ny .-y apn)T). Then we have

HV gt H = zi: a]n jnszn”2 < )\1n||0(n)H- (A.75)

Moreover, denoting A\; the smallest eigenvalue of the matrix Q7'Q, we have A1, — A1 in probability
as n — o0o. The assertion of the lemma then follows from (A.75), see also Visek (1996) or (2002a).
O
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