Autor: |
prof. PhDr. Ladislav Krištoufek Ph.D.,
|
Typ: |
Články v impaktovaných časopisech |
Rok: |
2013 |
Číslo: |
0 |
ISSN / ISBN: |
|
Publikováno v: |
Physica A: Statistical Mechanics and its Applications 392(24), pp. 6484-6493 arXiv PDF |
Místo vydání: |
|
Klíčová slova: |
Power-law cross-correlations; Long-term memory; Econophysics |
JEL kódy: |
|
Citace: |
|
Granty: |
402/09/0965: Nové přístupy pro monitorování a predikci na kapitálových trzích
GAČR P402/11/0948 Vývoj analytického rámce pro energetickou bezpečnost: Ekonometrie časových řad, teorie her, meta-analýza a teorie regulace
GAUK 1110213 Dlouhá paměť křížových korelací: Teorie, testy, odhady a aplikace (GAUK submitted)
SVV 267 504: Intensification of Doctoral Research in Economics and Finance: Extending Alternative Approaches to Economic Models
|
Abstrakt: |
We introduce a general framework of the Mixed-correlated ARFIMA (MC-ARFIMA) processes which allows for various specifications of univariate and bivariate long-term memory. Apart from a standard case when $H_{xy}=\frac{1}{2}(H_x+H_y)$, MC-ARFIMA also allows for processes with $H_{xy}<\frac{1}{2}(H_x+H_y)$ but also for long-range correlated processes which are either short-range cross-correlated or simply correlated. The major contribution of MC-ARFIMA lays in the fact that the processes have well-defined asymptotic properties for $H_x$, $H_y$ and $H_{xy}$, which are derived in the paper, so that the processes can be used in simulation studies comparing various estimators of the bivariate Hurst exponent $H_{xy}$. Moreover, the framework allows for modeling of processes which are found to have $H_{xy}<\frac{1}{2}(H_x+H_y)$. |