Detail publikace

GARCH Models, Tail Indexes and Error Distributions: An Empirical Investigation

Autor: prof. Roman Horváth Ph.D.,
Typ: IES Working Papers
Rok: 2015
Číslo: 9
ISSN / ISBN:
Publikováno v: IES Working Papers 9/2015
Místo vydání: Prague
Klíčová slova: GARCH, extreme events, S&P 500 study, tail index
JEL kódy: C15, C58, G17
Citace: Sopov B., Horvath R. (2015). “GARCH Models, Tail Indexes and Error Distributions: An Empirical Investigation” IES Working Paper 9/2015. IES FSV. Charles University.
Granty: DYME – Dynamic Models in Economics
Abstrakt: We perform a large simulation study to examine the extent to which various generalized autoregressive conditional heteroskedasticity (GARCH) models capture extreme events in stock market returns. We estimate Hill's tail indexes for individual S&P 500 stock market returns ranging from 1995-2014 and compare these to the tail indexes produced by simulating GARCH models. Our results suggest that actual and simulated values differ greatly for GARCH models with normal conditional distributions, which underestimate the tail risk. By contrast, the GARCH models with Student's t conditional distributions capture the tail shape more accurately, with GARCH and GJR-GARCH being the top performers.
Ke stažení: wp_2015_9_sopov_horvath

Partneři

Deloitte
Česká Spořitelna

Sponzoři

CRIF
McKinsey
Patria Finance
EY