Detail publikace

Estimation of financial agent-based models with simulated maximum likelihood

Autor: doc. PhDr. Jozef Baruník Ph.D.,
PhDr. Jiří Kukačka Ph.D.,
Typ: Články v impaktovaných časopisech
Rok: 2017
Číslo: 0
ISSN / ISBN:
Publikováno v: Journal of Economic Dynamics and Control, 85, pp. 21-45, DOI
Místo vydání:
Klíčová slova: heterogeneous agent model, simulated maximum likelihood, estimation, intensity of choice, switching
JEL kódy: C14, C51, C63, D84, G02, G12
Citace: Kukacka, J., Barunik, J. (2017). Estimation of financial agent-based models with simulated maximum likelihood. Journal of Economic Dynamics and Control, 85, pp. 21-45.
Granty: DYME – Dynamic Models in Economics GAUK 192215 - Odhad finančních heteroagentních modelů pomocí metody simulované maximální věrohodnosti
Abstrakt: This paper proposes a general computational framework for empirical estimation of financial agent-based models, for which criterion functions have unknown analytical form. For this purpose, we adapt a recently developed nonparametric simulated maximum likelihood estimation based on kernel methods. In combination with the model developed by Brock and Hommes (1998), which is one of the most widely analysed heterogeneous agent models in the literature, we extensively test the properties and behaviour of the estimation framework, as well as its ability to recover parameters consistently and efficiently using simulations. Key empirical findings indicate the statistical insignificance of the switching coefficient but markedly significant belief parameters that define heterogeneous trading regimes with a predominance of trend following over contrarian strategies. In addition, we document a slight proportional dominance of fundamentalists over trend-following chartists in major world markets.

Partneři

Deloitte
Česká Spořitelna

Sponzoři

CRIF
McKinsey
Patria Finance
EY