Detail publikace

Avdulaj, K. & Kristoufek, L.: On tail dependence and multifractality

Autor: Mgr. Krenar Avdulaj Ph.D.,
prof. PhDr. Ladislav Krištoufek Ph.D.,
Typ: Články v impaktovaných časopisech
Rok: 2020
Číslo: 0
ISSN / ISBN:
Publikováno v: Mathematics 8(10):1767 PDF
Místo vydání:
Klíčová slova: multifractality, tail dependence, serial correlation, copulas
JEL kódy:
Citace:
Granty: PRIMUS/19/HUM/17 2019-2021 Behaviorální finance a makroekonomie: Nové pohledy pro hlavní proud
Abstrakt: We study whether, and if yes then how, a varying auto-correlation structure in different parts of distributions is reflected in the multifractal properties of dynamic process. Utilizing the quantile autoregressive process with Gaussian copula using three popular estimators of the generalized Hurst exponent, our Monte Carlo simulation study shows that such dynamics translates into multifractal dynamics of the generated series. The tail-dependence of the auto-correlations forms strong enough non-linear dependencies to be reflected in the estimated multifractal spectra and separated from the case of the standard auto-regressive process. With a quick empirical example from financial markets, we argue that the interaction is more important for the asymmetric tail dependence. In addition, we discuss and explain the often reported paradox of higher multifractality of shuffled series compared to the original financial series. In short, the quantile-dependent auto-correlation structures qualify as sources of multifractality and they are worth further theoretical examination.
Prosinec 2020
poútstčtsone
 123456
78910111213
14151617181920
21222324252627
28293031   

Partneři

Deloitte

Sponzoři

CRIF
McKinsey
Patria Finance