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Abstract: It has been shown in many papers ([11], [18] etc.) that the Efficient 
Market Hypothesis (EMH) fails as a valid model of financial markets. The Fractal 
Market Hypothesis (FMH) is in a place as a more general alternative way to the 
EMH. The FMH can be formed on the following parameter: agents’ investment 
horizons. It lead us to conclude that a financial market is more stable when we 
adopt this fractal character in structures of agent’s investment horizons. For com-
puter simulations, the Brock and Hommes model [2] is modified. This adjusted 
model shows that various frequency distributions on agents’ investment horizons 
lead to different returns behavior. The FMH focuses on matching of  demand and 
supply of agents’ investment horizons in the financial market. It is the cornerstone 
that holds financial markets together. The EMH assumes the market is at equilib-
rium. The FMH on the other hand asserts that investors have an information dif-
ferently based on temporal attributes. Since all investors in the market have differ-
ent time investment horizons, the market remains stable. Our simulations of 
probability distributions of agents’ investment horizons demonstrate that many in-
vestment horizons ensure stability of the financial market. The behavior of the 
model under dynamical changes of agents’ trading strategies is analyzed.  
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1. Introduction 

The EMH was paradigm of economic and finance theory for the last 
twenty years. After empirical data analysis on financial markets and after 
theoretical economic and finance progress this paradigm is gotten over. 
There are phenomena observed in real data collected from financial mar-
kets that cannot be explained by the recent economic and finance theories. 
One paradigm of recent economic and finance theory asserts that sources 
of risk and economic fluctuations are exogenous. Therefore the economic 
system would converge to a steady-state path, which is determined by fun-
damentals and there are no opportunities for speculative profits in the ab-
sence of external shocks prices. It means that the other factors play impor-
tant role in a construction of real market forces as heterogeneous 
expectations. Since agents no have sufficient knowledge of a structure of 
the economy to form correct theoretical expectations, it is impossible for 
any formal theory to postulate unique value expectations that would be 
held by all agents [6]. Prices are partly determined by fundamentals and 
partly by the observed fluctuations endogenously caused by non-linear 
market forces. This implies that technical trading rules need not be sys-
tematically bad and may help in predicting future price changes. Develop-
ments in the theory of non-linear dynamic systems have contributed to new 
approaches in economics and finance theory [3]. Introducing non-linearity 
in these models may improve research of a mechanism generating the ob-
served movements in the real financial data. The financial market exhibits 
local randomness but also global determinism. Thus financial markets can 
be considered as nonlinear dynamic systems of the interacting agents proc-
essing new information immediately. Investors with the same investment 
horizons, and holding similar positions in the market may utilize this in-
formation differently. Therefore a financial market has a fractal structure 
in investment horizons. For an analyzing of behaviour of such market, an 
adjusted version of the model, introduced by Vacha and Vosvrda in the 
[14] with two main types of traders, i.e., fundamentalists, and technical 
traders, is used. Technical traders tend to put little faith in strict efficient 
markets. Fundamentalists rely on their model employing fundamental in-
formation basis for forecasting of the next price period. The traders deter-
mine whether current conditions call for the acquisition of fundamental in-
formation in a forward looking manners, rather than relying on post 
performance. This approach relies on heterogeneity in the agent informa-
tion and subsequent decisions either as fundamentalists or as chartists. 
Changing of the chartist’s profitability and fundamentalist’s positions is a 



basis of the cycles behaviour. A more detailed analysis is introduced in the 
Brock and Hommes model. This model with memory was analyzed in 
[15]. The model is presented in a form of evolutionary dynamics of 
price model. The fundamentalists are considered as traders with more 
rich structure of memory for price prediction. The chartists are con-
sidered as traders with more simple structure of memory for a price 
prediction. A simulation analysis of this model under changing prob-
ability properties of memory shows connections between EMH and 
FMH. Section 2 is devoted to dynamics of fractions of different traders. 
Agent’s investment horizons with a different form of memory structures in 
the performance measure are analyzed. Fractal structure of financial mar-
kets is shown in Section 3. Results of the simulation analysis are intro-
duced in Section 4. 



2. Dynamics of Traders  

Let us concentrate on dynamics of the fractions nh,t of different h-trader 
types, i.e. 

( ), 1 1 , 1 ,,...,t h t h t t L h t h ta x n f x x n f− − − −⋅ = ⋅ ≡ ⋅∑ ∑

t

, (2.1) 
h h

where nh,t-1 denotes the fraction of trader type h at the beginning of pe-
riod t, before than the equilibrium price xt has been observed and a denotes 
a gross return of a risk free asset which is perfectly elastically sup-
plied, i.e., a > 1 and L is a number of lags. Now the realized excess re-
turn over period t to the period t+1 is computed, where xt = pt – pt

*, and 
pt

* is the price corresponding to the intersection point of demand and sup-
ply, by 
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From the equation (2.4) we get 
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is a martingale difference sequence with respect to tℑ  i.e., 

( )1 0,t t tE δ + ℑ =   

for all t. So the Eq.(2.4) can be written as follows 
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,
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The decomposition of the equation (2.6) as separating the ‘explana-
tion’ part of realized excess returns Zt+1 into the contribution 
xt+1-  and the additional part δta x⋅ t+1. Let a performance measure  
π(Zt+1,ρh,t)be defined by 

( ), 1 , 1,h t t h t t t h tZ Z zπ π ρ ρ+ += = ⋅

( ), 1 1h t t t t t h tx a x z

⋅
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where 

( ), , 1 ,h t h t t h t tE Z f a xρ += = − ⋅   

and zt denotes the number of shares of the asset purchased at time t. 
So the h-performance is given by the realized profits for the h- trader. 



Let the updated fractions nh,t be given by the discrete choice probabil-
ity  

( ), ,exp /h t h t tn Yβ π −= ⋅ 1  (2.8) 

 (2.9) ( ), 1expt h
h

Y β π −= ⋅∑ t

The parameter β is the intensity of choice measuring how fast 
agents switch between different predictors. The parameter β is a 
measure of trader’s rationality. The variable Yt is just a normalization 
so that fractions nh,t sum up to 1. If the intensity of choice is infinite 
(β = +∞), the entire mass of traders uses the strategy that has the 
highest fitness. If the intensity of choice is zero, the mass of traders 
distributes itself evenly across the set of available strategies. 



3. Memory in the performance measure 

The performance measure is given by summation m-values of the lagged 
h-performance measures in the following form 
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where the m denotes the memory length, and the η is the realization of 
the random vector of predictor memory (trading horizons). We assume that 
the expression m = Eh[η] holds. All beliefs or the formation of expecta-
tions with different lag lengths will be of the following form  

, 1h t h t hf g x b−= ⋅ +  (3.3) 

where gh denotes the trend, bh the bias of trader type h. If bh = 0, the 
agent h is called a pure trend chaser if g > 0 (strong trend chaser if 

) and a contrarian if g < 0 (strong contrarian if g < -a). If gg a> h = 0, 
type h trader is said to be purely biased. He is upward (downward) biased 
if bh > 0 (bh < 0). In the special case gh = bh = 0, type h trader is called 
fundamentalist i.e., the trader is believing that prices return to their fun-
damental value. Fundamentalists do have all past prices and dividends in 
their information set, but they do not know the fractions nh,t of the other 
belief types.  



4. R/S Analysis of Agent Investment Strategies 

For estimating and analysing of correlation structures on capital mar-
kets, a nonparametric method of Hurst type is used.  H. E. Hurst discov-
ered very robust nonparametric methodology which is called rescaled 
range, or R/S analysis. The R/S analysis was used for distinguishing ran-
dom and non-random systems, the persistence of trends, and duration of 
cycles. This method is very convenient for distinguishing random time se-
ries from fractal time series as well. Starting point for the Hurst’s coeffi-
cient was the Brownian motion as a primary model for random walk proc-
esses.  

For computation of the R/S coefficients we have to divide the time se-
ries of length T, into N intervals of the length n, where n·N=T. Values 
{(R/S)n} are defined in the following form  
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where is the range and 
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is the sample standard deviation. The Hurst exponent H can be ap-
proximated by the following equation 

( )( ) ( ) ( )log / log log ,nR S c H n= +  (4.4) 

where c is a constant, and n = 9,…,400. If a system of random variables 
{(R/S)n} is i.i.d, then H = 0.5 The values of Hurst exponent belonging to 0 
< H< 0.5 signifies antipersistent system of variables covering less space 
than random ones. Such a system must reverse itself more frequently than 
a random process. With the assumption of a stable mean (which we do not 
impose here) we can equate this behaviour to a mean-reverting process. 
Values 0.5 < H < 1 show persistent process that is characterized by long 
memory effects. This long memory occurs regardless of time scale, i.e., 
there is no characteristic time scale which is the key characteristic of frac-
tal time series [11]. 

For obtaining of the expected {(R/S)n} values we have used the follow-



ing equation [11]: 
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Moreover, we have still used the statistics V which estimates the breaks 
in the R/S plot in an easier way. This one is usually used as a good meas-
ure of cycle length in the presence of noise [11]. This statistics is defined 
as 

Vn 
R/Sn

n  
(3.4) 

A plot of Vn versus log(n) would be flat if the system of random vari-
ables was an independent system, i.e., the R/S statistic was scaling with the 
square root of time. For H > 0.5 (persistent) the R/S was scaling faster 
than the square root of time so the plot would be upward sloping. On the 
other hand for H < 0.5 (antipersistent) the graph would be downward slop-
ing.  

Data used in the analysis are generated by the model outlined above in 
part 2 and 3. In all the cases we used with twenty belief types (traders), 
which has the trend g and bias b generated by random numbers generator 
with the normal distribution N ~ (0, 0.4) and N ~ (0, 0.3). The model gen-
erates four thousands observations, but to avoid problems with transients 
we do not use the first four hundreds observations. The intensity of choice 
(β = 80) is the same for all simulations. Memory or trading horizons are 
also random numbers generated by three distributions (normal, uniform, 
weibull), the fourth is a given, fixed, value for all traders of memory in a 
particular simulation. With each probability distribution of predictor mem-
ory, we make step by step the four simulations with different expected 
memory as follows (5, 10, 20, 40).To minimize a linear dependency of raw 
returns, which can bias estimates of the Hurst exponent significantly [11], 
we have used AR (1) residuals of these ones. This procedure eliminates se-
rial correlation. Results of those experiments are demonstrated in Tables 
(4.1-4.4). In these tables there are two estimates of the Hurst exponent. 
The first one used data from period n = 9 to 400. The second one (i.e., 
Hurst mod) used data from period n = 9 to break-even point of the V-
statistics. Figures (4.1–4.4) demonstrate R/S and V statistic for four differ-
ent memory distributions with the same expected memory (E[η] = 20). 
There are visible differences in the position of maximal value of the V-
statistic (break-even point). Figures (4.1, 4.5-4.7), where different memory 
lengths are shown for normal distribution, make obvious the importance of 
the memory length for the pricing behavior of the market. 



Table 4.1. Estimated Hurst coefficients and statistic of raw returns for memory mean 5 

E(η) = 5 Normal (5,1.25) Uniform (1,10) Fixed (5) Weibull (1.3) 

Hurst 0.112 0.122 0.171 0.128 

Hurst mod 0.858 (9-20) 0.636 (9-20) 0.851 (9-20) 0.542 (9-25) 

Var (x) 0.044 0.071 0.048 0.069 

Kurtosis (x) 0.029 0.119 -0.319 0.93 

Skewness (x) 0.025 0.197 -0.315 -0.378 

Table 4.2. Estimated Hurst coefficients and statistic of raw returns for memory mean 10 

E(η) = 10 Normal (10,2.5) Uniform (1,20) Fixed (10) Weibull (1.3) 

Hurst 0.186 0.164 0.239 0.146 

Hurst mod 0.718 (9-36) 0.727 (9-20) 0.789 (9-36) 0.594 (9 - 25) 

Var (x)  0.019 0.029 0.00584 0.027 

Kurtosis (x) 0.642 1.915 0.371 1.379 

Skewness (x) 0.186 0.41 0.096 -0.163 

Table 4.3. Estimated Hurst coefficients and statistic of raw returns for memory mean 20 

E(η) = 20  Normal (20,5) Uniform (1,40) Fixed (20) Weibull (1.3) 

Hurst 0.387 0.31 0.383 0.318 

Hurst mod 0.677 (9-40) 0.732 (9-20) 0.7 (9-45) 0.733 (9-18) 

Var (x)  0.00000438 0.00732 0.0000515 0.00778 

Kurtosis (x) 1.158 8.811 3.66 19.54 

Skewness (x) -0.571 -1.339 -0.155 1.671 

Table 4.4. Estimated Hurst coefficients and statistic of raw returns for memory mean 40 

E(η) = 40  Normal (40,10) Uniform (1,80) Fixed (40) Weibull (1.3) 

Hurst 0.462 0.421 0.47 0.399 

Hurst mod 0.611 (9-72) 0.556 (9-72) 0.606 (9-72) 0.587 (9-45) 

Var (x) 0.00000398 0.0052 0.00000354 0.00267 

Kurtosis (x) 0.245 24.652 0.203 17.795 

Skewness (x) -0.503 2.328 -0.895 -2.392 
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Fig. 4.1. R/S analysis and V– statistic for memory distribution N ~ (20,5). 
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Fig. 4.2. R/S analysis and V– statistic for memory distribution Uniform (1,40). 
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Fig. 4.3. R/S analysis and V– statistic for memory distribution Fixed (20). 
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Fig. 4.4. R/S analysis and V– statistic for memory distribution Weibull (1.3), E(η) = 20. 

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

Model
E(R/S)

R/S analysis

Log (number of observations)

Lo
g 

(R
/S

)

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

Model
E(R/S)

V - statistic

Log (number of observations)

V
 S

ta
tis

tic

 
Fig. 4.5. R/S analysis and V– statistic for memory distribution N ~ (5,1.25) 
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Fig. 4.6. R/S analysis and V– statistic for memory distribution N ~ (10,2.5) 

0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

Model
E(R/S)

R/S analysis

Log (number of observations)

Lo
g 

(R
/S

)

0.5 1 1.5 2 2.5 3 3.5
0.6

0.8

1

1.2

1.4

Model
E(R/S)

V - statistic

Log (number of observations)

V
 S

ta
tis

tic
 

Fig. 4.7. R/S analysis and V– statistic for memory distribution N ~ (40,10) 
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Fig. 4.8. Weibull distribution for memory length with E[m] = 20. 



Conclusions 

Short memories of predictors i.e., short agent’s investment horizons 
cause more volatile of price realizations on capital markets, but by values 
of the Hurst coefficients there exist possibilities of the price predictions 
due to the persistence of the fundamental strategy structures. Long memo-
ries of predictors i.e., long agent’s investment horizons cause more stable 
behaviour of price realizations on capital markets (see Tables 4.1–4.4). 
These tables demonstrate dependencies among agent’s investment hori-
zons and both local randomness and global determinism.  

The FMH is a more general notation than the EMH. The FMH and the 
EMH are equivalent in the break-even point of the V-statistics. Here are 
equivalent the Brownian motion and the fractional Brownian motion. 
Therefore financial markets are nonlinear systems with a fractal structure 
of agent’s investment horizons. These markets are unpredictable in the 
long-term period, but predictable in the short-term period. The key fea-
tures- the lengths of memory and probability distribution in memory- in-
fluence self-similarity properties in agent’s investment horizons are dem-
onstrated in tables (4.1–4.4) and figures (4.1–4.7). 
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