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Abstract

The aim of the thesis is to investigate the predictability of Central-European com-
mon stock returns. In the first chapter, using weekly data on the Czech, Hungarian
and Polish major value-weighted indices in the period 1996:1 to 2002:12, it is shown
that the index returns contain predictable components and that both the mean and
volatility can be forecasted from the time-series of historical returns. In Chapter
2, the Johansen cointegration analysis is applied to the weekly data on the Czech,
Hungarian, Polish and German equity market index prices in the period 1998:1 to
2002:12. The results indicate that the four considered markets are cointegrated when
prices are expressed in local currencies, whereas no cointegration was found for prices
in terms of Euro. In both case, there is significant cross-country predictability, i.e.
lagged returns from one market can be used to predict returns from at least one other
market. The third chapter is dedicated to studying the impact of nonsynchronous
trading on the predictability of stock returns. The Lo and MacKinlay (1990) econo-
metric model is generalized to allow for an autocorrelated common factor. Finally,
in Chapter 4 the economic significance of stock return predictability is evaluated. A
dynamic trading strategy based on a maximally predictable portfolio is developed for
monthly returns on Polish stocks in the period 2000:1 to 2002:12 and its performance
evaluated using various market timing measures. The results imply economically
significant predictability in the Polish stock returns.

Keywords: emerging markets, predictability of stock returns, cointegration, con-
ditional heteroskedasticity, nonsynchronous trading.

JEL Classification: C22, C32, E44, G14, G15

Abstract

[in Czech] Cilem této diplomové préace je analyza prediktibility vynost akcii na stte-
doevropskych kapitdlovych trzich. V prvnf kapitole je ukdzdno, ze v obdob{ 1996:1 az
2002:12 bylo mozno predikovat vynosy i volatilitu hlavnich akciovych indexi ¢eského,
polského a madarského trhu pomoci ¢asovych fad historickych vynost. V druhé
kapitole je aplikovdna Johansenova kointegra¢ni analyza na tydennf ceny akciovych
indexti ¢eského, mad’arského, polského a némeckého kapitdlového trhu v obdobf 1998:1
az 2002:12. Z analyzy vyplyvd, Ze ¢tyfi vyse uvedené trhy jsou kointegrované, pokud
pouzivime ceny vyjddiené v ndrodnich meéndch, pficemz kointegraci nebylo mozno
prokidzat pro ceny vyjadrené v Euru. V obou pfipadech lze ale predikovat vynosy
nérodnich indext pomoci zpozdénych hodnot vynost alespoii jednoho z ostatnich in-
dexti. Tteti kapitola se zabyva vlivem nesynchronntho obchodovani na prediktibilitu
vynost akcii. Na zdkladé zobecnéného ekonometrického modelu nesynchronniho ob-
chodovéni (Lo a MacKinlay, 1990) je ukdzdno, Zze nesynchronni obchodovani vnasi
do casovych fad vynosi akcif zddnlivou autokorelaci. Posledni ¢tvrtd kapitola je za-
méfena na posouzeni ekonomického vyznamu prediktibility vynost polskych akcii.
Porovnava se zde vykonnost dynamické obchodni strategie zalozené na maximélne
predikovatelném portfoliu s pasivni investi¢ni strategii. Z analyzy polskych vyplyva,
ze prediktibilita vynost byla v obdobf 2000:1 az 2002:12 ekonomicky vyznamnd, tj.
bylo mozno dosdhnout nadprimérného vynosu po zapocteni transakénich nakladi.

Klicovd slova: vynosy akcif a jejich predikce, lokdlni heteroskedasticita, kointe-
grace, nesynchronni obchodovéni.

JEL Klasifikace: C22, C32, E44, G14, G15
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Introduction

Until the late 1980’s, the Random Walk Model has dominated the finance literature as a
theory best describing the time-series behavior of stock prices in an efficient capital mar-
ket. In his famous paper, Samuelson (1965) argues that the active participation of many
profit-seeking investors must result into random fluctuation of stock prices, provided that
the prices properly incorporate the expectations and information of all investors. In other
words, if all investors form rational expectations about future stock price movements based
on all currently available information, then any sign of stock return predictability will be
immediately exploited and thus ceases to exist. The Samuelson version of the Efficient Mar-
ket Hypothesis, however, fails to take into account the risk associated with holding stocks.
We will show below that random walk is not a necessary condition for an informationally
efficient market and that market efficiency may hold even if stock returns are forecastable.
The confusion of the Efficient Market Hypothesis with the Random Walk Hypothesis is,
however, not uncommon in the empirical literature and hence, readers beware!.

Grossman and Stiglitz (1980) provide an even stronger argument against the Random
Walk Model for stock prices. They assert that a stock market cannot be informationally
efficient in equilibrium, because acquiring information is costly. If all information is al-
ready incorporated in the stock prices then there would be no private return for collecting
information and hence no incentive for investors to trade. As a result, the market would col-
lapse. Only if there is some degree of informational inefficiency would investors exert effort
to gather information and trade, but this situation is clearly inconsistent with completely
unpredictable stock price fluctuations, i.e. the Random Walk Model.

Despite these sound theoretical arguments against the Random Walk Model, it was not
until the seminal paper by Lo and MacKinlay (1988), where the null hypothesis of random
walk was decisively rejected for portfolios of American stocks. Subsequently, voluminous
research emerged indicating that stock prices in various developed equity markets around
the world contain predictable components. New methods and techniques have been de-
veloped for detecting predictabilities in stock returns and evaluating their statistical and
economic significance. A state-of-the-art reference in this field is the collection of seminal
papers by Andrew W. Lo and A. Craig MacKinlay published together under the title ” A
Non-Random Walk Down Wall Street”?.

The purpose of this thesis is to investigate the predictability of stock returns on Central-
European equity markets. In particular, we focus on the Czech, Hungarian and Polish

'For example, Hanousek and Filer (1996, pp. 2) write: ”A market is weekly efficient if [stock] prices
fully reflect all information contained in historical [stock] price series. Such efficiency implies that stocks
follow a random walk...”

Lo and MacKinlay (1999).



INTRODUCTION vi

capital markets and consider the German stock market as a benchmark. The thesis is
divided into four chapters. With a slight modification, each chapter can be considered a
separate article or working paper, but combining them together in a single work provides
a more accurate and comprehensive picture of the sources and significance of stock return
predictability. Although the thesis is an empirical one, we always provide a brief overview
of the underlying theory and describe the methodology being applied to the time-series of
stock returns under study. Basic knowledge of modern finance and time-series econometrics
is, however, assumed.

We start by time-series analysis of the Central-European stock index returns in Chap-
ter 1. The Random Walk Hypothesis is put to test and an alternative parametric model
(ARIMA) is proposed for modeling and forecasting stock returns. We also consider fore-
casting the volatility of returns using a GARCH model with ¢-distributed innovations. This
approach allows for explicit modeling of the ’fat tails’ usually observed in the stock return
distributions.

In Chapter 2, we study stock return predictability in a multivariate context. We apply
the Johansen (1988, 1991) cointegration analysis to the Czech, Hungarian, Polish and
German stock index prices to investigate whether these equity markets 'move together’
or if they evolve independently. We analyze the short-term and long-term dynamics of the
index returns and its implications for cross-country predictability, i.e. the forecast power
of lagged returns from one market in predicting future returns from other markets.

Chapter 3 is dedicated to studying the effect of nontrading and nonsynchronous trading
on the time-series properties of stock returns. Within the framework of the Lo-MacKinlay
(1990) econometric model of nonsynchronous trading we show that the empirically observed
autocorrelation of stock returns may be spurious, induced by infrequent trading. We gen-
eralize the model by letting the common factor driving stock returns follow a stationary
first-order autoregressive process. This specification allows for a direct decomposition of
the estimated first-order autocorrelation coeflicient of stock returns into the (spurious) part
induced by nonsynchronous trading and the (real) part inherent to the returns.

Finally, Chapter 4 is aimed at evaluating the economic significance of stock return
predictability in Central-European equity markets. We first present the methodology of
maximizing predictability of stock returns in a context of a multifactor forecasting model,
where various macroeconomic and term-structure variables are considered as factors. On
the basis of the maximally predictable portfolio, we follow a simple dynamic asset allocation
strategy and asses its out-of-sample performance using various measures of market-timing
skills. The analysis is performed on Czech and Polish stock returns.

The thesis concludes with a brief summary of the empirical results and suggestions for
further research.



Chapter 1

Time-Series Predictability

Time-series predictability of asset returns is primarily concerned with forecasting future
returns from the time series of past returns'. It has always attracted a great deal of
attention from academics but also from the professional community due to its apparent
simplicity and intuitive appeal. To forecast future returns from past returns, all an investor
needs is the time series of historical prices and a powerful econometric software package
that will enable her to perform the necessary tests and estimation to uncover possible
regular patterns in the stock prices. And since the marginal costs of obtaining the data and
econometric software package are negligible in these days, potential gains from correctly
predicting future market movements can be enormous.

This chapter presents modern econometric methods and tools aimed at detecting the
presence of regular patterns in asset returns. These are not confined to stock returns but can
be readily applied to other financial instruments, real estate, etc. The chapter is organized
as follows. In Section 1.1 we briefly introduce the Efficient Market Hypothesis (EMH)
which spurred the research on return predictability. We define the Fair Game Model and
the Random Walk Model and discuss the impossibility of testing the EMH per se. In Section
1.2 we present the methodology of a simple specification test of the random walk hypothesis.
Next, in Section 1.3 comes an alternative to the random walk, the autoregressive integrated
moving average process, which can be used to forecast the conditional mean of a time series
when the random walk hypothesis does not hold. Since it is useful to forecast not only the
mean but also the variance of asset returns?, Section 1.4 describes the widely used model of
time-varying volatility, the generalized autoregressive conditional heteroskedastic process.
Finally, the empirical results for the Czech, Polish and Hungarian stock returns will be
reported in Section 1.5 followed by a short discussion and suggestions for future research
in Section 1.6.

'In Fama(1991), the field of time-series predictability also includes forecasting future returns from vari-
ables like dividend yields (D/P), price/earnings ratios (P/E), and term structure variables. But since we
are concerned with the Central-European stock markets, where the data on D/P and P/E are generally
not available, we will not consider such possibility. The forecast power of the term structure variables will
be investigated in Chapter 4 of the thesis.

2The variance of returns is, for example, a key parameter in derivative pricing models. Hence an accurate
estimate of a derivatives price requires an efficient estimate of future volatility. See Hull (2000), Chapter
15, for details.
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1.1 The Efficient Market Hypothesis

One of the most important concepts in modern finance has been the Efficient Market
Hypothesis. In his classic review, Fama (1970) summarizes that ”a market in which prices
always "fully reflect’” available information is called ’efficient’.” The quotation marks suggest
that it has to be further defined what ’fully reflects’ means. Bellow, we will focus on two
models of market efficiency, the Fair Game Model and the Random Walk Model as outlined
in Fama (1970). We also have to specify what subset of available information is to be
'fully reflected’ in stock prices. The classical taxonomy of information sets, due to Roberts

(1967), distinguishes among

e Weak-Form Efficiency: The information set includes only historical prices of re-
turns.

e Semistrong-Form Efficiency: The information set includes all publicly available
information (i.e. information available to all agents).

e Strong-Form Efficiency: The information set includes all privately available infor-
mation (i.e. information available to any agent).

In our work, we will be concerned with the Weak-Form Efficiency only since our goal is
to investigate the predictability of stock returns from the time series of historical returns.
We now turn to formally defining what ”fully reflects” means.

1.1.1 The Fair-Game Model

The Fair Game Model is based on the assumption that the conditions of market equilibrium
can be stated in terms of expected returns and that expected returns are formed on the
basis of the information set, which we denote ®;. Formally,

E[Pjiy1 | @) = (14 Erjegr | @4)) Py, (L.1)

where P}, is the price of security j at time ¢ and r;; is its return. The expected equilibrium
return E [rj41 | ®;] usually comes from a particular equilibrium theory (such as CAPM,
APT, etc.) but regardless of what equilibrium theory used the information set ®; is fully
utilized when determining the expected return. This rules out the possibility of a trading
strategy based on &, that would yield systematically returns above expected equilibrium
returns. To see this, let 2, 1denote the excess return at time ¢ on security 7, i.e.

Zjtr1 = Tjep1 — B [rjer | ] (1.2)
But if the information set @, is fully utilized when forming expectations then
Elzji | @4 =0,

and hence the sequence of excess returns is a fair game with respect to the information set
®,. Note that the fair game model does not imply that returns must be serially uncorrelated.
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In the weak-form efficiency tests, ®; contains only the time series of historical returns. The
covariance between successive returns can be then written as

Cov [rje, Tje] = /(Tjt — Elrj)(Erjea | r5e) = Erjea]) f(rje)drj (1.3)
Tjt

where f(rj;) denotes the marginal distribution of rj;. The fair-game property (1.2) does not
imply that E [rji11 | 7j¢] = E [rje+1] and thus the covariance between successive returns can
be non-zero. What is important for market efficiency, however, is that the excess return
zj¢ be serially uncorrelated. Hence the presence of serial correlation in returns does not
necessarily imply weak-form inefficiency. The expected return can well be serially correlated
in such a way that the excess returns is unpredictable. Elton and Gruber (1995) provide
an example of such situation. Consider a stock of a company successively increasing its
debt/equity ratio. This results into successive increases in risk associated with holding the
stock and hence in increases in expected return. The realized returns will exhibit serial
correlation but since the expected return has also successively increased, this information
cannot be used to earn positive excess return.

1.1.2 The Random Walk Model

The Random Walk Model can be viewed as a special case of the Fair Game Model. Suppose
that market environment is such that the process generating new information along with
the evolution of investors tastes produces equilibria in which return distributions repeat
themselves through time (Fama, 1970). Furthermore, if we assume that the fact that
a security’s price fully reflects available information implies independence of successive
returns, we arrive at the Random Walk Model. Formally,

f(rieea | @0) = f(rjes1), (1.4)

where the density function f is the same for all . The serial covariance of returns is zero
at all leads and lags and the expected return is equal to the unconditional mean of the
distribution f at all times. If 7j; denotes the one-period continuously compounded rate of
return®, then the log-price process, pj¢, can be written as

Djt = P+ Pjt—1 + Ejt, (1.5)

where € is an iid zero-mean random variable’ and ;1 denotes the mean of the distribution
f. Equation (1.5) is the common form of the random walk model for stock prices used in
the literature. The reason for formulating the random walk in natural logarithms is due to
the limited liability property of stock prices (stock prices cannot be negative).

Clearly, the excess return in the Random Walk Model is a fair game with respect to the
information set ®;, since

Elzji | &) =p—p=0.

3The one-period continuously compounded rate of return is the solution to the equation P, = " P,_q,
i.e. r =py — pi_1, where p; =1n P;.
4Throughout the thesis, we use #d to denote independently identically distributed random variable.
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The Random Walk Model is, however, more restrictive than the Fair Game Model since
it requires successive returns to be independently identically distributed. It follows that
random walk is a sufficient but not necessary condition for market efficiency and hence
rejecting the null hypothesis of random walk does not imply that the market is inefficient.

The hypothesis of identity of distributions of returns can be relaxed to allow for time-
varying volatility. There has been mounting evidence in the literature that stock returns are
conditionally heteroskedastic® and since we are primarily concerned with the predictability
of the mean of returns, rejection of the random walk hypothesis due to heteroskedasticity
is not of much interest.

From the discussion above follows that the only true test of market efficiency is a test
based on the excess return. To perform such a test one needs to assume a particular
equilibrium theory that generates expected returns, E [rj;41 | ®;]. But this inevitably leads
to the problem of joint hypothesis of market efficiency and equilibrium theory: when we
find that the behavior of returns is not in line with the implications of the EMH, it remains
ambiguous in what way it should be split between market inefficiency and an inappropriate
model of market equilibrium (Fama, 1991). Hence the Efficient Market Hypothesis per se
is not testable.

At this point the reader may wonder why we have spent so much time discussing market
efficiency when, after all, it is not testable in practice. The reasons are twofold. First, the
EMH provides some theoretical framework for studying asset return predictability. The
Random Walk Model is clearly a natural starting point of all tests of return predictability:
when the null hypothesis of random walk cannot be rejected then it is very unlikely that
the subsequent tests would reveal any regular patterns in stock returns. Moreover, the
failure to reject the null provides evidence in favor of the EMH. Second, as Fama (1991)
writes, ’[the empirical literature on efficiency| has changed out views about the behavior of
returns, across securities and through time’. Although researchers do not agree about the
implications of the tests for market efficiency (due to the joint-hypothesis problem), they
agree on the fact that these tests have substantially helped to improve out knowledge of the
behavior of stock returns. Thus the Efficient Market Hypothesis provides the background
for now a more general area of asset return predictability.

1.2 A Random Walk Test

This section presents a simple specification test due to Lo and MacKinlay (1988) aimed
at testing the random walk hypothesis outlined above. Recall that the random walk for a
log-stock price p; can be written as®

Pt = H+ P11+ &, (1.6)

where g is the expected one-period continuously compounded rate of return on the stock
and {g;} is a sequence of independently but not necessarily identically distributed random
variables with finite variances 2. Note that we do not assume that the ¢,’s are Gaussian.
To test the null hypothesis of random walk, Lo and MacKinlay (1988) exploit the fact that

®See Section 1.4 for more details on conditional heteroskedasticity.
0We drop the subscribt j for simplicity.
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the variance of a ¢-th difference of the process (1.6) is equal to the sum of the corresponding
q first-difference variances. To see this, note that the ¢-th difference of (1.6) can be written
as

Pt —Di—qg = Pt —pi—1) + (D=1 —Dr—2) + -+ + (Dr—gt1 — Di—q);
t

= :uq—’_ €iy
i=tlg+1

and thus the variance of p; — p;_, is equal to

Var{p, —piq] = o2
i=t—q+1

= i Var [pi - pi—l] .
i=tt—q+1

It follows that the ratio Var [p: — piq] / Sor, g+1 Var [pi — pi—1] must be equal to one under
the null hypothesis and the test based on this idea is called the variance ratio test.

To build a test statistics suppose we collect nq + 1 observations on the log-stock price
p¢. Define the estimators:

. 1 1
o= — ) (k= Pr-1) = —(Png — Do),
ng_, ng
1
6 = { (pk — Pr—1 — 1)?,
ng—1 1
. 1
Go(q) =

= _ a2
m{ (Pe = Pr—gq — aft)",
=q
where m = q(ng — ¢+ 1)(1 — 1/n), and define the statistic:
MT(Q) = P 1. (17)

Then Lo and MacKinlay (1988) show that under the null hypothesis of random walk with
fairly general forms of heteroskedasticity” in the sequence {e;}, the test statistic

2*(q) = Vaghl(q)/ Vb (18)

converges asymptotically to the standard normal distribution, i.e. 2*(q) ~ ~ N(0,1) . The
variable 0 in (1.8) is a heteroskedasticity-consistent estimator of the asymptotic variance of
M,(q). See Lo and MacKinlay (1988) for details on the formula for 6.

"For a detailed description of the heteroskedastic null hypothesis, see Lo and MacKinlay (1988). For
our purposes, it is sufficient to note that this null hypothesis allows for GARCH processes in the error term
€t, and hence the test is robust to conditional heteroskedasticity in stock returns.



CHAPTER 1. TIME-SERIES PREDICTABILITY 6

To develop some intuition for the variance ratio (1.7), it can be shown that the following
equality obtains asymptotically®:

29=9) 5, (1.9)

where p(j) is the j-th order autocorrelation coefficient of the first-differences of p;. From
(1.9) we see, that the variance ratio can be expresses as a weighted sum of the first ¢ — 1
autocorrelation coefficients of the first differences of p; with positive arithmetically declining
weights. Under the null hypothesis of random walk, all autocorrelation coefficients are equal
to zero and hence M, (q) is also equal to zero. The sequence of the continuously compounded
rate of return is simply a white noise process with possibly time-varying variances.

1.3 An Alternative to Random Walk: ARIMA

There has been mounting evidence in the literature that stock prices do not follow random
walk. To give just a few examples, Lo and MacKinlay (1988) apply their variance ratio test
to the weakly returns on size-sorted portfolios of NYSE-AMEX stocks and decisively reject
the null hypothesis of random walk. Gilmore and McManus (2001) study the random walk
hypothesis using weakly data on Central-European equity markets (Czech Republic, Poland
and Hungary) and find significant autocorrelation in stock returns, thereby rejecting the
random walk model. Similarly, Filacek et al. (1998) investigate the weak-form efficiency
of the Prague Stock Exchange using daily data on the main value-weighted market index
PX-50 and conclude that the returns are significantly positively autocorrelated.

1.3.1 The ARIMA (p,1,7) Model

A natural generalization of the Random Walk Model better approximating the data gener-
ating process of stock returns is to allow for some pattern of serial correlation in the error
process {e;}. Consider an infinite-order moving average process for {&;} :

pe =K+ p_1 + Y(L)ey, (1.10)

where (L) denotes an infinite-order polynomial in the lag operator. Although this repre-
sentation is fairly general, it is impossible in practice to fit an infinite number of parameters
to the data. Moreover, we usually prefer a parsimonious model over a too complicated one.
It is thus useful to make an additional assumption regarding (L), namely that it can be
expressed as a ratio of two finite-order polynomials in the lag operator:
0(L) 1460, L+0,L%+-- +0,L
O(L) 1= L—¢yl2—--—¢,LP
This expression is meaningful provided that all roots of the polynomial ¢(L) lie outside the
unit circle. Substituting (1.11) into (1.10) and multiplying by ¢(L) we obtain

(1= L—¢yL? ==, L") (1 = L)py = pu+ (1 + 61 L+ 02L* + - - - + 6,L%e;, (1.12)

8See Lo and MacKinlay (1988) for the derivation of (1.9).

(L) = (1.11)
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where = (1 — ¢y — ¢ — -+ — ¢,)r. Expression (1.12) is the autoregressive integrated
moving average process, denoted p; ~ARIMA(p,1,q). The order of integration is equal
to one in this particular case, since from (1.10) follows that first-differencing the time
series of log-stock price is sufficient to achieve stationarity. The usual way to estimate a
model of the type of (1.12) is to apply the methodology developed by Box and Jenkins
(1972). This involves four steps. First, the time series under study has to be differenced
to achieve stationarity. In our case, first-differencing should suffice, but the null hypothesis
of stationarity of the differenced time series should be tested rigorously before proceeding
further in the analysis. We will return to this problem later. Second, the autocorrelation
and partial autocorrelation functions are examined to make an initial guess about the
values of p and q. Then the model (1.12) is estimated’ and finally, diagnostic checks are
performed to determine the appropriateness of the model. When it fails, steps three and
four are repeated with different values of p and ¢. Since the Box-Jenkins methodology is
well-known and widely used we will not discuss is in greater detail here. The interested
reader is urged to consult Box and Jenkins (1972) or, for example, Enders (1996).

A common objection among economists to the class of models introduced above and
the methodology used to estimate them is that they are usually not based on any rigorous
economic theory. Rather, the idea ”let the data speak” is invoked when selecting the
parameters p and g. This approach thus necessarily leads to problems with interpreting
the results. Suppose, for example, that a researcher finds that a time series of monthly
inflation appears to follow an ARIMA(3, 1,2). Although this may be quite useful for short-
term predictions of future inflation, no economic theory implies or predicts that this should
be indeed the case. Hence we do not learn much about the way inflation is determined in the
real economy with these models. A similar argument clearly holds for the application of the
Box-Jenkins methodology to stock prices. But this must not imply that ARIMA modelling
of stock prices should be completely discarded. As we show in a moment, there are several
more or less well theoretically founded specifications of an ARIMA model for stock prices
that guide our selection of the parameters p and ¢ and help improve our understanding of
the behavior stock market prices over time.

1.3.2 Market ’Fads’

The empirical findings of significant autocorrelation in stock returns have led some authors
to proposing an alternative theory to the Random Walk Hypothesis. Summers (1986),
Poterba and Summers (1988), and Fama and French (1988), for example, propose the
following representation of the log-stock price process {p;}:

pr = p; + U, (1.13)

where p; is the fundamental value of the security at time ¢, and w, is a stationary com-
ponent that reflects the departure of the price of a security from its fundamental value.
Summers (1986) argues that although this model violates the Efficient Market Hypothesis

9The model is usually estimated using non-linear least squares or maximum likelihood. We will return
to the estimation method in the next chapter, where we show that an ARIMA model can be simultaneously
estimated with a model of time-varying volatility for the error process {e;} .
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by allowing the price to systematically differ from its fundamental value there are theo-
retical explanations for this behavior. One such explanation is what he calls market 'fads’
or ’animal spirits’. Investors do not always price assets perfectly rationally but tend to
be subject to temporary enthusiasm or pessimism about future economic conditions and
market development. This behavior clearly drives the price apart from its fundamental
value but since the irrational enthusiasm of pessimism is assumed to be only temporary,
the stock price will eventually return to its fundamental. To be specific, Summers (1986)
assumes that the fundamental value and the irrational component evolve according to the
following stochastic processes:

*

p; = HEDPqter (1.14)

U = QU—1 + vy, (1.15)

where {g;} and {v;} are independent white-noise processes with variances o and o2, re-

spectively, and « is assumed to be close to but less than one. Hence, the fundamental
value p; represents a permanent component of the stock prices (is follows a random walk),
whereas u; is a transitory though fairly persistent component. The closer the parameter
« is to one, the larger and longer and the swings of the stock price from its fundamental
value. Summers (1986) then argues that as o approaches one, it is virtually impossible to
reject the null hypothesis of random walk for the stock price p; since in such circumstances
the process for u, is indistinguishable from random walk in finite samples. Consequently,
the failure to reject the null hypothesis of random walk (and hence market efficiency) is not
evidence in favor of its acceptance: the parameter a may be very close to but less than one
and hence the market is extremely inefficient due to very persistent (though temporary)
deviations from the fundamental value. The available statistical tests cannot simply detect
this pattern. Nevertheless, the log-stock price process defined in (1.13),(1.14) and (1.15)
has interesting time-series implications. One can show that equations (1.13),(1.14) and
(1.15) imply that p; follows an ARIMA(1,1,1) process of the form!°

(1—-pL)(1—L)pt=c+ (1 —06L)ey, (1.16)

1070 see this, write the first-difference of (1.13)
* *
Pt —Pt—1 =P —Pp1 T Ut — Up—1.

Now lag this equation one period, multiply it by « and subtract it from the above equation. This yields
after rearranging

(1 — Oé)Apt — (1 — oz),u =&t — Q€41 + Vg — Vg_1.

The expression on the right-hand side of this equation is a sum of two independent MA(1) processes and
hence it is an MA(1) process (see Hamilton,1994, for a proof of this result). The coefficient 6 and the
variance 02 can then be computed by equating the variance and first-order covariance of e; — fe; 1 and
gy — agr—1 + vy — vi—1. For computational simplicity, we made the assumption (without loss of generality)

that 02 = 1.
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where {e;} is a white-noise process and
= «

(I—a)u

= J1+a®+202+(1-a) [(1+a2+403]1/2}/(2a+2a§),

ol = (a+02)/0.

Q) f.

> o D
|

[\

This ARIMA specification for stock price is, however, fairly restrictive because it implies
that the stock returns for all time intervals (e.g. days, months, years, etc.) are negatively
autocorrelated. To see this, note that the continuously compounded rate of return from
time t to t + T', which we denote 74,7, implied by (1.13) is given by

Tii+T = DPt+T — Dt
= (Pior — 07) + (Ueyr — ).

Fama and French (1988) show that the first-order autocorrelation coefficient of the T-period
continuously compounded rate of return, which is the slope coefficient in the regression of
Tei+T ON Ty_7, can be written as

Cov [Tt t+Ts Tt—T t]
T — , : 1.17
pl( ) Var [Tt—T,t] ’ ( )
_ —(1 —a®)*Var [u] (1.18)
Var [ugr — u) + Var [p;r:r - pf] ,

provided that the random walk and stationary components of the stock price are uncorre-
lated. Note that p,(7") is negative for all T" regardless of the sign of a. It is interesting to
examine the behavior of (3.18) as T" approaches infinity. Fama and French (1988) demon-
strate that as 7' — oo, the stationary component tends to push p,(7") towards -0.5 (in
the absence of the random-walk component p,(7)) — —0.5 as T" — o0). The variance of
the random-walk component explodes, however, as 7" — oo and this tends to push p;(T)
towards zero. To sum up, if the stock price has both components, p,(7") might have a
U-shaped pattern, starting close to zero for small 7', then becoming more negative as T'
grows larger, but eventually the variance of the random walk begins to dominate and p, (T)
moves back to zero. This property of the random-walk-plus-stationary-AR(1) model, how-
ever, has not observed empirically: although both Fama and French (1988) and Poterba
and Summers (1988) find that the returns of longer holding periods (larger than one year)
appear to be negatively serially correlated'!, Poterba and Summers (1988) also examine
shorter holding periods and find significant positive autocorrelation in monthly returns.
Their findings are similar to those of Lo and MacKinlay (1988) who detect significant pos-
itive autocorrelation in weekly returns. Thus the empirical results for American stocks are
inconsistent with the model given in equations (1.13),(1.14) and (1.15).

The market fads hypothesis provides a candidate theoretical framework for estimating an
ARIMA model for stock prices in that it specifies a particular source of return predictability

" Both studies examine American stocks only.
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and identifies the possible values of p and q. Of course, one may argue that it is not a rigorous
theory. But in light of the recent burst of the technology bubble, which is a prominent
example of irrational enthusiasm of investors, along with the fact that the 2002 Nobel Prize
in economics was awarded to Daniel Kahneman for his work on psychological models of
irrational behavior, the hypothesis of market fads’ or ’animal spirits’ has definitely gained
in importance. It remains the task of future research to formulate a sound theory of
irrational behavior of stock market agent that will allow for more general pattern of return
autocorrelation that the simple model of Summers (1986).

1.3.3 Time-Varying Expected Return

A second example of an ARIMA model that has been applied in the empirical literature
which will be briefly discussed here is based on Conrad and Kaul (1988). Recall from Section
1.1 that market efficiency does not impose any conditions on the time-series properties of
the expected return. All that is required from an efficient market is that the excess return
be unpredictable from the time series of the past returns. Also, as Conrad and Kaul
(1988, pp. 410) note, ”existing asset-pricing theories do not specify any particular a priori
restrictions on the variations through time in expected returns”. Usually, an asset pricing
model would specify the cross-sectional structure of expected returns (CAPM, APT, etc.)
without concretely addressing the question of how the expected return should evolve over
time. These considerations led Conrad and Kaul (1988) to try to characterize the time-series
properties of expected returns empirically, given market efficiency.

They propose a first-order autoregressive process for the expected return. Their model
is thus given by

re = Eian]+e, (1.19)
Eiqlr] = ¢Biaria] —w, (1.20)

where 7, is the realized return on a stock in period from ¢t — 1 to ¢, F;_; [ry] is the expected
return for a security over period from ¢ — 1 to ¢ based on the information available at ¢t — 1,
{e;} and {u,;} are independent white-noise processes with zero means and variances o2, 62,
respectively and ¢ < 1. Note that although the expected return is serially correlated, the
excess return

=1 — By [Tt] = &,

is independent through time and hence the model in equations (1.19) and (1.20) is consistent
with the weak-form Efficient Market Hypothesis. The choice of the AR(1) process for the
expected returns is based on empirical evidence on cross-sectional stock return predictabil-
ity. The economic variables used in such studies (see Fama, 1991, for an overview)'? to
explain the cross sectional behavior of the realized stock returns are usually highly autocor-
related themselves implying that the expected returns should reflect this variation through
time. The choice of the first-order autoregression and not a higher-order autoregression is
then made for simplicity and parsimony.

2The cross-sectional behavior of stock returns will be discussed in greater detail in Chapter 4 of the
thesis, where the predictive power of various economic variables will be investigated.
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Without discussing the estimation procedure’® used by Conrad and Kaul (1988) to
extract the unobserved expected return and estimate the autoregressive parameter ¢, we
merely note that the model in (1.19) and (1.20) implies that the realized returns follow an
ARIMA(1,1,1) model:

(1=¢L)(1 = L)pe = (1 = 0L)ay,

2

a*

2

2 can be

where {a;} is a white-noise process with variance 2. The parameters # and o
computed in a similar way as those in (1.16)'.

The two examples of an ARIMA model for stock returns described above provide some
theoretical guidance for identifying the model. Although they both imply that stock re-
turns contain predictable components, they differ fundamentally in addressing the question
of whether this fact can be used to attain systematically positive access return. If the
Summers’s (1986) hypothesis holds, i.e. if the market is extremely inefficient, then clearly
there exists a trading strategy that yields superior returns. If, on the other hand, market
efficiency hypothesis holds and the serial correlation in returns is induced by autocorrelated
risk factors driving the expected stock returns as suggested by Conrad and Kaul (1988),
then the fact that returns are predictable cannot be used to achieve abnormal returns. It
remains therefore to be determined, which of the two hypothesis is supported by empirical
results. We will touch upon this question in Section 1.5 and in Chapter 4. Now, we will give
two more examples of an ARIMA model for stock prices that have become fairly common
in empirical studies of developed stock markets. These are not based on the concept of

market efficiency or expected return but rather on market microstructure arguments.

1.3.4 Nonsynchronous Trading

It is the common practice in the vast majority of stock market empirical studies to implicitly
assume that the data used for the study were sampled at equidistant points in time. Usually,
a researcher chooses a particular data frequency (daily, weekly, monthly, etc.) that best
suits the purpose of his/her analysis and takes for granted that the data were really sampled
at times implied by the data frequency. To give an example, it is common to use daily
data on stock prices for testing various hypothesis about emerging stock markets. This
is because the history of these stock markets is short which rules out the possibility of
obtaining a sample of statistically plausible size with lower frequency. The daily stock price
is typically defined as the closing security price on that day. That is a price prevailing
at the stock exchange close. Hence it may appear that recording all closing stock prices
simultaneously implies that daily prices are sampled simultaneously and at equidistant
points in time (the time of the stock exchange closing is the same for all trading days). But
this argument is clearly false. The closing stock price, though recorded at the time of the
stock exchange close, was actually sampled at the time when the last trade in that security
on that particular day was executed. For stocks of large corporations traded on developed
stock markets these two times usually almost coincide since trading in these securities takes
place almost continuously ("almost’ continuously here means within intervals of seconds or
at maximum tens of seconds). For small stocks or for stocks traded at emerging markets

13They use a Kalman filter to estimate their model. See Conrad and Kaul (1988, p.411) for details.
1See footnote 9.
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this need not be, however, the case. It is not uncommon for such stocks not to trade at all
during some trading days.

To formalize these considerations, Lo and MacKinlay (1990) develop an econometric
model of nonsynchronous trading. Since a generalized version of their model and its em-
pirical application will be the topic of Chapter 3 of the thesis, we will introduce this model
here only briefly and demonstrate what implications for the time-series properties of stock
returns the effect of nonsynchronous trading has.

Assume that the virtual unobserved return on a security j at time ¢, denoted rj, is
generated by the following stochastic process:

Tt = MJ + BjAt + 5jlf) (121)

where 1, is the security’s expected return, A; is an éid zero-mean common factor and ¢y is
an 7id zero-mean idiosyncratic noise. Assume further that A; and €;, are independent across
securities and through time. This specification of the return-generating process implies that
the unobserved stock price follows random walk'®. In each period there is some positive
probability p; that security j does not trade. Then the observed return, denoted r]t, is
equal to zero, although the unobserved return r; is given by (1.21). In the next period
security j again does not trade with probability p; and the process continues. If the security
trades in period ¢ and did not trade for the past n consecutive periods then the observed
return for period ¢ is defined as the sum of the n past virtual returns and the virtual return
for period t. Under these assumptions, along with the assumption that the binary process
governing the trading-nontrading behavior is a sequence of #id Bernoulli variables, Lo and
MacKinlay (1990) show that the moments of the observed return 7, are given by:

E[r] = n (1.22)
Var [r?t} = a + 12_ uj, (1.23)
Cov [r9 it ?Hn} = —ujpj, (1.24)

where 03 = Var[r;,]. From (1.22), (1.23) and (1.24) we see that nontrading increases
the variance of returns and induces negative spurious autocorrelation into the observed
return time-series that decays geometrically. Similar results can be derived for portfolios
of securities with identical nontrading probabilities. The important message of this model
is that ignoring the effect of non-synchronicity in the data may result into completely false
inferences: when the researcher neglects this effect he/she may find that stock returns are
autocorrelated and hence predictable. But from the model we learn that the autocorrelation
is not a symptom of genuine predictability (the unobserved returns are unpredictable) but
rather it is caused by infrequent trading and hence it is spurious. This in turn implies that
this type of autocorrelation of returns cannot be used as a basis for a trading strategy aimed

at achieving abnormal returns. Suppose, for example, that an investor finds significant

1"The unobserved return, 7;; is a sum of a constant and two independent white-noise processes, hence it
is independent through time. But since rj; is the first-difference of the log-price process, this implies that
the log-price process follows random walk.
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serial correlation in stock returns. He may (falsely) attribute this evidence to genuine
predictability and base his decision as to whether to buy the security or sell it short on the
forecasted return from his (ARMA) model. But since there is some positive probability that
the security does not trade each day, the investor may find that he/she is indeed unable to
buy or sell the security on some days and hence his/her trading strategy brakes down. Thus
just like in the model of Conrad and Kaul (1988) this trading strategy does not produce
systematically positive excess return.

The fact that the autocorrelation of observed returns, r?t, declines geometrically is
consistent with an ARIMA(1, 1,0) process for the observed returns. This specification is
also supported by empirical studies (see, for example, Lo and MacKinlay (1988)). Hence
the effect of nonsynchronous trading provides another candidate theoretical framework
for ARIMA modelling of stock returns. And since this effect is likely to be particularly
important in the Central-European stock market, where liquidity is extremely low for the
majority of traded stocks, we will dedicate an entire chapter to examining its impacts in
greater detail.

1.3.5 The Bid-Ask Spread

Another example of spurious autocorrelation induced by market microstructure is a model
of the bid-ask spread due to Roll (1984). The bid price of a security is the highest price at
which investors are willing to buy the security and the ask price is the lowest price at which
investors are willing to sell the security. The difference between these two prices is the
bid-ask spread. It is reasonable to assume that the true value of the security is somewhere
in between the bid and ask prices. Roll (1984), for example, assumes that the true price
is in the middle of the bid-ask interval. He then shows that even if the true value of the
security follows a random walk, the bid-ask spread induces spurious autocorrelation into
the stock returns. To see this, let {p;} denote the log-price process and {p;} denote the
unobserved process for the log-true value of the security. Define p; and p; as follows:

S
pe = pitghite (1.25)
pi = ptpigto, (1.26)

—1 with probability 1/2, (1.27)

j { 1 with probability 1/2,
. =

where s is the bid-ask spread, {¢;} and {v;} are independent zero-mean white-noise processes
with variances o2 and o2, respectively, and {I;} is a sequence of iid Bernoulli random

variable with probability 1/2. The continuously compounded rate of return in the model
(1.25), (1.26) and (1.27) then obeys

re = Ap,=Apt+ th + Aey, (1.28)
S
= Ut Vet Er— €41 +§(It _It—l). (129)

The term on the right-hand side of (1.28) is a sum of a) a constant, b) a white-noise
process, ¢) an MA(1) process, and d) an MA(1) process. Since &, vy, and I; are assumed
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independent, it follows that 7, is an MA(1) process and hence p; follows an ARIMA(0, 1,1)
process that can be written as

(1-L)ps=p+(1—-0L)ay, (1.30)

where {a;} is a zero-mean white-noise process with variance o2. The parameters  and o2
can be derived in a similar way as in the Summer’s model (see footnote 9).

The model of the bid-ask spread completes our exposition of the possible theoretical
arguments for ARIMA modelling of stock prices. We have seen that various theoretical
considerations can explain the time-series properties of stock returns. It remains the task
of empirical research to determine which of the models discussed above are likely to account
for the empirically found predictable components of stock prices. But before we turn to
empirical applications we present a model of time-varying volatility, which can substan-
tially enhance our knowledge of the time-series behavior of stock returns and increase the
efficiency of estimation of the ARIMA-type models.

1.4 Time-Varying Volatility: GARCH

One of the main principles of modern finance is that expected return is somehow related
to risk. There are numerous equilibrium models specifying this relationship (see Elton and
Gruber (1995) for details). For instance, in the standard Sharpe-Lintner-Mossin CAPM,
expected return is proportional to systematic risk, i.e. to risk that cannot be diversified
away. Although there is not a general agreement in the literature as to what model best
explains the reality, it is widely accepted that when agents are risk-averse, expected return
is an increasing function of risk.

A widely used measure of the risk of an asset is the standard deviation of returns from
the unconditional mean. This measure can be loosely interpreted as long-run volatility,
since it appears to be determined by various economic fundamentals characteristic for a
particular asset and is usually assumed constant for the period under study. It has been
observed, however, in numerous studies that returns are not homoskedastic and that ”large
price changes tend to be followed by large changes of either sign and small changes tend
to be followed by small changes of either sign” (Mandelbrot, 1963, p.418). Also it has
been observed empirically that the unconditional distributions of stock returns exhibits
fatter tails (see, for example, Fama, 1965) than what would be consistent with the normal
distribution. But the distributional properties of stock returns have important implications
for asset pricing: in the above mentioned CAPM model, for example, the variances and
covariances are used as a measure of risk, but as Bollerslev (1987, p.542) notes, ”depending
on the distribution of the returns, the variance may not be a valid or sufficient statistic
to use”. Another example of the importance of the distributional assumptions is the well-
known Black-Scholes option pricing model, which rests on the hypothesis of normality of
the underlying stock returns and assumes constant volatility of returns over the life of the
option. Clearly, correctly specifying the distribution of asset returns is a necessary condition
for rational asset pricing.

In this section, we present a model of time-varying volatility originally introduced by
Engle (1982) and later generalized by Bollerslev (1986). This model will allow us to pin
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down the distributional properties of stock returns and it will also provide a means of

predicting future volatility from the time-series of historical returns®¢.

1.4.1 The GARCH(r, p) Model

Consider a standard linear regression model
ye = a1 B+ e, (1.31)

where z; is a vector of explanatory variables, possibly including lagged dependent variable
and moving average terms, (3 is a vector of unknown parameters to be estimated and {¢;} is
a white-noise process. Although ¢, is uncorrelated with €,_; for all j, the observation that
large changes tend to be followed by large changes of either sign cited above suggests that
the same need not be true for £? and 5?_].. In his pioneering work, Engle (1982) proposes
the following model of the error process:

& = ut) I, (1.32)
he = (Fafe] +ade; 5+ +ale], (1.33)

where {u;} is a white-noise process with zero mean and unit variance and h; is the condi-
tional variance of &;, conditioned on the information available at time ¢t — 1. In particular,
the conditional variance h; is assumed to linearly depend on the past p squared disturbances
from the regression model in (1.31). A white-noise process satisfying (1.32) and (1.33) is
the autoregressive conditional heteroskedastic process, denoted e, ~ARCH(p).

In a generalization of the process (1.33) introduced by Bollerslev (1986), the conditional
variance of £; depends on an infinite number of lagged squared disturbances:

he = ¢+ ¥(L)ef, (1.34)

where (L) is an infinite-order polynomial in the lag operator. By parametrizing (L) as
a ratio of two finite-order polynomials, «(L)/ (L), and assuming that the roots of the
polynomial §(L) lie outside the unit circle, the following expression for the conditional
variance can be derived:

he = w =+ 61th1 + Gahyo + -+ - 6 hy_yp + Ade] | + e} o+ -+ per_, (1.35)

where w = (1—91—Jda—- - -—0,.). Equation (1.35) is the generalized autoregressive conditional
heteroskedastic process, denoted ¢, ~GARCH(r, p). The reader may note the resemblance of
the ARCH and GARCH processes to the ARMA models. Indeed, it can be shown that if ¢,
follows an ARCH(p) process then &7 follows an ARMA((p,0). Similarly, if &, ~GARCH(r, p)
then €2 ~ARMA(m,r), where m = max(p,r)'". These facts may prove to be useful for
identification purposes as we will see in the subsequent empirical application.

6For a more rigorous treatment of the ARCH family of models, see Hamilton (1994) or Engle (1995). An
extensive review of theory and empirical evidence from developed stock markets is provided in Bollerslev
et al. (1992).

17See Hamilton (1994, Ch.21) on the proof of these results.
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To develop some intuition for the GARCH model, consider a simple GARCH(1,1) spec-
ification!®:

ht = w-+ (Slht—l + &16?_1,
= w++ ((51 + Oél)ht_l + 061(83_1 - ht—l)‘ (136)

The expected variance h; is a weighted sum of the variance expected for the past period,
hi_1, and the unexpected shock to the variance in the past period, €2 | —h;_;. The parame-
ter a; measures the impact of the unexpected shock on the expected next period’s volatility
and (61 + 1) measures the rate at which the unexpected shock dies out over time. The
process for the conditional variance is covariance-stationary provided that 6; +a; < 1. The
closer 61+« is to 1, the more persistent the volatility is. A general GARCH(r, p) process is
covariance-stationary if and only if (1) + a(1) < 1. To ensure non-negativity of volatility,
w, 0;,and o are assumed positive.

The models of autoregressive conditional heteroskedasticity have important implications
for the distributional properties of the unconditional disturbances, £;. One of the measures
used to describe the shape of the density function of a random variable is the standardized
fourth moment, i.e. the kurtosis (denoted K). For a random variable that is normally
distributed, kurtosis is equal to 3. When K > 3 there is more probability mass in the tails
of the density function then in the tails of a normal density function. Such distribution
are called leptokurtic. When, on the other hand, K < 3, the opposite holds and such
distributions are called platykurtic. To see how conditional heteroskedasticity effects the
unconditional distribution of the error terms in equation (1.31), assume that u; YN (0,1).
Then we have!?

Ele] _ El] E[R] _ 3(E[h])

K (u) = S = > — 3. (1.37)
(E [h]) (£ [h]) (£ [h])

where the second equality follows from the independence of u; and h;, and the inequality
follows from the Jensen’s inequality. Thus the unconditional distribution of the error term
g will have fatter tails even though the conditional distribution is normal. Recall that
excess kurtosis for unconditional stock returns is consistent with some empirical findings
(e.g. Fama,1965). Although the conditional normality assumption in the GARCH model
generates some degree of unconditional excess kurtosis (equation (1.37)), this is usually
insufficient to account for the fat-tailed properties of the data: the standardized residuals

from a GARCH model for stock returns, u; = &;/ Vhs, often appear to be leptokurtic?.
Bollerslev (1987) therefore suggests an alternative to the conditional normality assumption:
the standardized Student’s t-distribution with the number of the degrees of freedom to be
estimated. There are also other alternatives, such as the generalized exponential distri-
bution or the stable Paretian distribution®'. In our work we will focus on the Student’s
t-distribution since it is fairly simple to implement in empirical applications.

18The GARCH(1,1) model is the most widely used model in the empirical finance literature.

19We assume throughout this section that the fourth moment of &; exists. This need not be generally the
case. See Hamilton (1994, Ch.21) for details on the conditions for existence of the fourth moment of &;.

20See, for example, Bollerslev (1987) or Connolly (1989).

21See Bollerslev et al. (1992) for a full list of alternatives that have been applied in the literature.
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1.4.2 Estimation by Maximum Likelihood

The distributional considerations bring us to the problem of estimation of a GARCH model.
The vast majority of empirical studies use the method of maximum likelihood to estimate
the parameters of the model given in equations (1.31), (1.32) and (1.35). The usual assump-
tion is made that the error term is conditionally normally distributed, i.e. e ~ N(0, hy).
Then the maximum likelihood estimator is consistent and asymptotically normally distrib-
uted even if the true distribution is non-normal. The standard errors of the estimates, how-
ever, are inconsistent if the true distribution is not normal, but Bollerslev and Wooldridge
(1988) derive a robust estimator of the covariance matrix yielding consistent estimates of
the standard errors under such circumstances. This method is called the quasi-maximum
likelihood estimation (QMLE). Alternatively, one can assume a different conditional distri-
bution for the error term. Following Bollerslev (1987), we assume that &; is conditionally
t-distributed with v degrees of freedom, i.e.,

(| he) ~ folee| i) =
_ (“ + 1) r (3} (0= 2)hy) (1 + 57?0 e v > 2(1.38)

2 2 ht(U—Q

where f,(e; | ht) denotes the conditional density function and I'(-) is the gamma function.
It is well-known property of the Student’s t-distribution that as the number of the degrees
of freedom increases without bound, the ¢-distribution approaches a normal distribution
with zero mean and variance h;, but for finite v, the ¢-distribution has fatter tails than
the corresponding normal distribution. Hence assuming the conditional ¢-distribution in
connection with a GARCH model may better account for the excess kurtosis found in
the stock market returns. Moreover, the estimated number of degrees of freedom, v may
indicate the source of the excess kurtosis in the unconditional stock returns: according to
Connolly (1992), if o < 10, both non-normality and conditional heteroskedasticity explain
the excess kurtosis in returns, whereas if © > 30 conditional heteroskedasticity is the only
source of fat tails in the unconditional distribution of returns.

To estimate the model given in (1.31), (1.32), (1.35) and (1.38) by the method of
maximum likelihood we collect the unknown parameters (including v) in a vector ¢. The
log-likelihood function is given by

00) = log fuler | ). (1.39)

To maximize (1.39) we employ the algorithm developed in Berndt, Hall, Hall and Haus-
man (1974). The obtained parameter estimates are asymptotically normally distributed,
consistent and asymptotically efficient under the null hypothesis that ¢, is conditionally ¢-
distributed. To test against the null hypothesis of conditionally normal errors (i.e. 1/v = 0)
we use the usual likelihood ratio test statistic??. The test statistic is asymptotically x? dis-
tributed with one degree of freedom. Similarly, we can test the null hypothesis that the

22 According to Bollerslev (1987), the usual test statistic will likely be more concentrated towards the
origin that a x? distribution because 1/v is on the boundary of the admissible parameter space. He notes,
however, that for sample sizes of one hundred and more the bias is very small. In the subsequent empirical
application, we will neglect this bias because our sample contains over 300 observations.
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disturbances ¢; are unconditionally Student’s t-distributed (i.e. 61 = 09 = -+ = §, =
a1 = ay = -+ = a, = 0) by referring the LR test statistic to the critical values of the 2
distribution with r + p degrees of freedom.

As an alternative to MLE, the GARCH(r, p) model can be estimated by the Generalized
Method of Moments (GMM)?. An advantage of this approach is that one does not need
to assume any particular distribution of the error term ¢;. This advantage, however, comes
at a cost: if the true distribution of the error term is the Student’s ¢, then MLE outlined
above produces asymptotically efficient estimates, whereas GMM does not.

1.4.3 Testing for ARCH effects

Engle (1982) derives a Lagrange multiplier test for the null hypothesis of no ARCH effects
in the residuals from the regression (1.31). This test is run by regressing the estimated
squared residuals éf on the past ¢ values of éf, ie.

& =i Vb g+ '%é?—q + Vg (1.40)

Provided that the residuals in (1.31) were estimated consistently, the TR? from the regres-
sion (1.40) is asymptotically x? distributed with ¢ degrees of freedom. An asymptotically
equivalent alternative testing procedure to the LM test is to run the Ljung-Box Q-test?*
for serial correlation on the squared residuals éf. The Q-statistic is given by

2
"

T—y

Q) =T(T+2)y"

Jj=1

where 72 denotes the squared j-th order autocorrelation coefficient of £?. Under the null

hypothesis that there is no serial correlation in é? up to lag p the Q(p) statistic is asymp-
totically x? distributed with p degrees of freedom.

1.4.4 Diagnostics: The BDS test

Once a GARCH-type model has been estimated, it needs to be established whether the
model is correctly specified, i.e. if it captures all serial correlation in the squared residuals.
A widely applied approach is to run the ARCH-LM test on the standardized residuals, 4; =

&/ \/ﬁ: . If the model is correctly specified the squared standardized residuals should be
serially uncorrelated and hence the ARCH-LM test should fail to reject the null hypothesis
of homoskedasticity of ;.

Some authors have suggested applying the correlation integral-based test statistic devel-
oped by Brock et al. (1987)%5. The correlation integral is the probability that a randomly
selected pair of points is close in the sense of the L®-norm. The points are n-dimensional
vectors formed from the data as follows:

l’? = (xt—n+17 . ,xt).

23See Campbel et al. (1999, Ch.12) for details.
2Ljung and Box (1978).
25See Bollerslev et al. (1992, pp.23) for an overview.
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The parameter n is called the embedding dimension. The proximity parameter, which we
denote k, defines ’how close’ to each other the points should be. The correlation integral,
C,(k), clearly depends on the two parameters. Under the null hypothesis that the data
are iid, Brock et al. (1987) show that for any n, C, (k) = [C1(k)]" and they exploit this
property to build a test statistic for testing the null hypothesis:

JCur (k) = [Cur(h)”

Jn,T(k) - & T(k) )

(1.41)

where C,, r(k) and Cy (k) are the sample counterparts to C,,(k) and C; (k), respectively, and
onr(k) is an estimator of the asymptotic standard deviation of {C,, r(k) — [C17(k)]"} *°.
Under Hy, the BDS test statistic .J,, (k) is asymptotically standard normal. Although the
BDS test is usually applied to test against the alternative of deterministic chaos, it has also
power against nonlinear dependencies. It can be thus applied to the standardized residuals
from a GARCH model to test whether these residuals are iid and hence the GARCH model

captures all nonlinearities in the variance of residuals®’.

1.4.5 Other GARCH-type Models

Since the introduction of the basic ARCH and GARCH models by Engle (1982) and Boller-
slev (1986) many alternative specifications based on these models have emerged®®. Two
particular models are interesting from the point of view of the finance theory, the threshold
ARCH, denoted TARCH developed independently by Zakoian (1994) and Glosten et al.
(1993), and the GARCH-in-mean model due to Engle et al. (1987).

In the standard GARCH model given in equation (1.35), the effects of random shocks,
g; on the conditional variance h;;; are symmetric, i.e. a positive shock (g; > 0) increases
expected volatility in the same magnitude as a negative shock (¢, > 0). Now consider the
value of common stock of a highly levered company, i.e. a company with a high debt/equity
ratio. An unexpected decrease in the price of the stock results into a decrease in the value
of equity and hence, other things unchanged, into an increase in leverage and financial risk
associated with holding the stock. As a result, future volatility may increase more after a

negative price shock than after a positive one. This asymmetry can be modeled using the
threshold ARCH (TARCH) specification for the conditional variance:

hi =w—+01hi—1 4+ 0ohi—o+ -+ 0l + )\dt_lsf_l + alsf_l + agsf_Q 4+t apsf_p, (1.42a)
where

d i 1if U1 < 0,
=171 0 otherwise.

A negative price shock (¢; > 0) has an impact of (a3 + A) on h;, whereas a positive
price shock influences h; though « only. If the estimate of A is positive and statistically

26See Campbell, Lo and MacKinlay (1997, Ch.12) for details on the formulas for C,, r(k), C1 7 (k) and
2
an,T(k)'
2TA correction factor is required when applying the BDS test statistic given in (1.41) to standardized
residuals from estimated GARCH models, see Brock et al. (1990).
28See Engle (1995) for an overview.
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significant? we say that the leverage effect exists. Whenever \ # 0, positive and negative
price shocks influence the conditional volatility asymmetrically. The TARCH model can be
estimated by the method of maximum likelihood in the same way as the standard GARCH
model.

The concept of risk is closely related to the second application of the GARCH-type
models in finance, the GARCH-in-mean model. We have noted above that the models
of market equilibrium imply that expected return is a function of risk. Some equilibrium
model are explicitly derived under the hypothesis of risk-aversion (such as the Sharpe-
Lintner-Mossin CAPM) but other models do not require this strong assumption (APT).
To measure the degree of risk aversion of investors empirically one can explicitly model the
relationship between expected return and risk by adding the conditional volatility h; into
the regression equation for stock return:

Ty = xtTﬁ + why + €4,

where h; is given in (1.35) or (1.42a), x; is a vector of explanatory variables and 0 = (3, )
is a vector of unknown parameters. When the estimate of 7 is positive, expected return
is an increasing function of expected volatility and hence investors are risk-averse. On the
contrary, m < 0 implies that investors are risk-seeking. Finally, risk-neutrality is consistent
with 7 = 0. Although the GARCH-in-mean can be also estimated by ML, to obtain
consistent parameter estimates the conditional distribution of the error term e; must be
correctly specified (Bollerslev et al., 1992). Hence if the true conditional distribution is not
normal, QMLE does not yield consistent estimates.

1.5 Data Description

To perform the analysis of predictability of stock returns on the Central-European capital
markets we focus on the 365-week period starting in January, 1996 and ending in December,
2002. We use weekly closing prices of the value-weighted indices WIG, BUX and PX-50
of the Warsaw, Budapest and Prague stock exchanges, respectively. These value-weighted
indices are widely used in empirical studies on emerging markets and are believed to well
describe the evolution of the corresponding equity markets. For an overview of the insti-
tutional framework, trading system, number of listed companies and other details on the
Central-European stock markets, see Hanousek and Filer (1996) and Gilmore and McManus
(2001). For comparison, we also perform the analysis on the DAX index of Deutsche Boerse.
The data were downloaded from Bloomberg.

The choice of weekly data is important for two reasons. First, the effect of nonsyn-
chronous trading induces spurious autocorrelation into the index returns, but the lower the
data frequency the less important this effect is®’. Thus to mitigate this effect we choose to
use weekly rather than daily data. Second, almost all statistical inferences drawn in the
subsequent section are based on asymptotic theory and hence require a sufficient number
of observations to be reliable. Using monthly data would therefore not be appropriate due
to the short history of the stock markets under study.

29The likelihood ration test can be used to test the null hypothesis that A = 0.
30See Chapter 3 for details.
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We define the continuously compounded rate of return in week ¢ on an market index

MI as

where M1, = {W;, By, P;, D;} and W, B, P and D stand for WIG, BUX, PX-50 and DAX,
respectively. The descriptive statistics for the weekly returns on W, B, P and D are sum-

marized in Table 2.1.

TIME-SERIES PREDICTABILITY

riw =InMIL; —InMI,_4,

Table 2.1. Descriptive Statistics

WIG BUX PX-50 DAX

Mean 0.00176 0.00449 0.00017 | 0.00063
Variance 0.00167 0.00225 0.00093 | 0.00124
Maximum | 0.13470 0.14736 0.11580 | 0.12887
Minimum | -0.19244 | -0.33016 | -0.14045 | -0.14079
Skewness | -0.23585 | -1.06877 | -0.12109 | -0.36527
Kurtosis 4.80766 | 11.67206 | 4.52814 | 4.45511
Jarque-Bera | 53.0793* | 964.6577** | 36.4067** | 40.3178**

*

*significant at the 1% level
The Jarque-Bera test?' indicates significant departures from normality for all indexes. To
learn more about the shape of the unconditional density functions we employ a non-
parametric kernel density estimator®? rather than reporting the usual histogram. Using
Epanechnikov kernel and setting the bandwidth to the rule-of thumb value proposed by Sil-
verman (1986) we obtain estimates of the unconditional densities given in Figures 2.1a,b.?3.

Figure 2.1a. Kernel Density Estimates

X

BUX

The estimated density functions of weekly returns on the Central-European stock market
indexes are similar to those usually obtained for indexes of developed stock markets (e.g.
Fama, 1965). The empirical densities are leptokurtic which has important implications for

31The Jarque-Bera test is a test for skewness and kurtosis. Under the null hypothesis, skewness=0 and
kurtosis=3, which are the values of normal distributions. Thus the test is sometimes called a normality
test. For details, see for example Greene(2000).

32For details on non-parametric density estimation, see for example, Haerdle et al. (1990).

33The empirical density functions were estimated using XploRe 4.3.
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further statistical tests and estimation.

Figure 2.1b. Kernel Density Estimates

X*R-2

PX-50 DAX

As we noted in Section 1.4, the fat tails of the unconditional empirical distributions can be
attributed to conditional heteroskedasticity and/or conditional non-normality.

1.6 Empirical Results

This section reports the results of the analysis of stock return predictability performed on
the Central-European stock market indexes. We start with the heteroskedasticity-consistent
random walk test described in Section 1.2. Next come the results from ARIMA estimation
(when applicable) followed by the ARCH-LM test results for conditional heteroskedasticity.
Then we present the estimated GARCH-type models and the likelihood ratio tests for the
null hypotheses that a) the residuals from the ARIMA models are conditionally Gaussian,
and b) the residuals are homoskedastic and unconditionally Student’s t-distributed. We
also examine the risk aversion of investors using the likelihood ratio test for the presence
of the conditional volatility term in the mean equation for returns (ARCH-in-mean) and
test for the asymmetric impact of shock to volatility (TARCH). Finally, we asses the ability
of the proposed GARCH models to remove all non-linearity in the standardized residuals
using the Ljung-Box Q test and the BDS test.

Table 2.2 summarizes the results of the variance ratio test applied to the time series
of weekly closing log-values of WIG, BUX, PX-50 and DAX indexes. Following Lo and
MacKinlay (1988), we compute the variance ratios (1 + M,(q)) and the corresponding
robust test statistics for ¢ = 2,4,8,16. The null hypothesis of random walk is decisively
rejected for the Czech index PX-50. The variance ratio for PX-50 is larger than 1 for ¢ = 2
implying positive first-order autocorrelation in weekly returns on this index (see equation
(1.9)). The first-order autocorrelation coefficient is approximately equal to 11%. In case of
the Hungarian BUX index, the variance ratio for ¢ = 8 is statistically different from one at
the 5% significance level, thereby rejecting the random walk null hypothesis. For WIG and
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DAX indices, the null hypothesis of random walk cannot be rejected.
Table 2.2. Random Walk Test Results

qg=2 q=14 q=2_8 q=16

1+ M,.(q) 0.997 1.032 1.106 1.003

WIG 2*(q) -0.057 0.384 0.931 0.023
Prob. 0.954 0.701 0.352 0.982

1+ M, (q) 0.964 1.162 1.299 1.202

BUX 2*(q) -0.532 1.445 2.209 1.117
Prob. 0.595 0.149 0.027 0.264

1+ M.(q) 1.108 1.306 1.430 1.266

PX-50  z*(q) 1.902 3.722 3.901 1.622
Prob. 0.057 0.000 0.000 0.105

1+ Mr(q) 1.097 1.131 1.158 1.295

DAX  2*(q) 1.392 1.207 1.134 1.578
Prob. 0.164 0.227 0.257 0.114

Before we turn to the discussion of the results of the random walk test we should briefly
comment on the power of the test against various alternatives. In particular, we may be
interested in the power of the test against the ARIMA(1,1,0) model. The ARIMA(1,1,1)
model of market 'fads’ due to Summers (1986) does not seem to be an appropriate alter-
native. Recall that this model predicts that the first-order autocorrelation coefficient of
returns should be negative for all holding periods (see equation (1.17)). But the first-order
autocorrelation coefficient for daily returns is positive and statistically significant for all
indexes used in our analysis®*, which contradicts the predictions of the Summer’s model.
To investigate the power of the variance ratio test against the ARIMA(1,1,0) alternative, Lo
and MacKinlay (1989) perform a Monte Carlo experiment under the assumptions that the
disturbances are #id N(0,1) and the autoregressive parameter is set equal to 0.2. Based on
20,000 replications, they find that for 256 observations the power of the two-sided 5%-test
is equal to 0.887, 0.744, 0.498 and 0.298 for ¢ = 2,4, 8 and 16, respectively. Thus their test
has considerable power against the ARIMA(1,1,0) model even for moderate sample sizes.
As the sample size decreases, however, the power of the test declines substantially3’.

The results of the random walk test indicate that the Czech and Hungarian stock contain
predictable components. These findings are in contradiction to an earlier study due to
Hanousek and Filer (1996) who were not able to reject the null hypothesis of random walk
for PX-50, BUX and WIG using weekly data for the period starting at the data each index
was first calculated and ending in June, 1996. Since our sample and that used by Hanousek
and Filer(1996) are almost non-overlapping (they have only 24 common observations) it
appears that predictability in the Czech and Hungarian stock returns has increased over
the last decade. It may be interesting to divide our sample into two non-overlapping
subsamples and run the random walk test independently in the subsamples. Our sample,
however, contains only 365 weekly observations and thus the size of the subsamples would
be small resulting into the variance ratio test having low power.

34We do not report the estimated first-order autocorrelation coefficients for daily returns here for the
sake of brewity. The estimates are available from the author upon request.
35 See Lo and MacKinlay (1989).
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Since the random-walk model was rejected for the Czech and Hungarian stocks we will
now search for a parametric model that would give us more insight into the nature and
degree of predictability. We do this by identifying and estimating an ARIMA(p,1, ¢) model
discussed in Section 1.3 using the Box-Jenkins methodology. For the PX-50 index we find
an ARIMA(1,1,1) model to best describe the data generating process and for BUX index,
ARIMA(2,1,0) appears to be the best alternative. We do not report the estimation output
here since both models will be re-estimated allowing for ARCH effects in the residuals in
the subsequent paragraph®®. Next we run the ARCH-LM test for the null hypothesis of
no conditional heteroskedasticity in the residuals from the ARIMA models. For WIG and
DAX indexes, we apply the test to the residuals from a regression of returns on a constant
only, since for these indexes the null hypothesis of random walk could not be rejected (i.e.
the residuals should approximate a white noise sequence). We set the order of the test,
p = 8. Also we run the Ljung-Box Q-test of order eight on the estimated squared residuals.
Table 2.3 summarizes the results.

Table 2.3. ARCH-LM Test Results
WIG | BUX | PX-50 | DAX
ARCH-LM Test Stat. | 39.669 | 12.560 | 43.843 | 73.030

Prob. 0.0000 | 0.1279 | 0.0000 | 0.0000
Ljung Box Q-stat. | 45.557 | 13.791 | 45.511 | 107.76
Prob. 0.0000 | 0.0870 | 0.0000 | 0.0000

Except for the Hungarian BUX index, both test clearly indicate presence of conditional
heteroskedasticity in the estimated residuals. In case of the BUX index the null hypothesis
of homoskedasticity is rejected at the 10% significance level using the Ljung-Box Q-test but
the ARCH-LM test fails to reject the null at the conventional significance levels. Hence the
presence of conditional heteroskedasticity in the residuals from the ARIMA(2,1,0) model
for BUX index has to be further investigated.

We now turn to modelling conditional heteroskedasticity in the index returns. In par-
ticular, we assume the GARCH(1,1) model for the residuals from the corresponding mean
regression equations. It turns out that this model has superior performance in compar-
ison to other GARCH specifications. Thus for the Czech PX-50 index we estimate an
ARIMA(1,1,1)-GARCH(1,1) model, for the BUX index an ARIMA(2,1,0)-GARCH(1,1)
model and for WIG and DAX indexes we assume a random walk model whose increments
obey a GARCH(1,1) process. Recall that an ARIMA(p,1,q)-GARCH(1,1) model is given
by

e = PGt t Qi p et 0ig1 + 048,
& = Ut[ hi,

ht = w+(51ht_1+0é1€t2.

We estimate these models by the method of maximum likelihood under the assumption
that the residuals are conditionally Student-¢ distributed with v degrees of freedom?®’. The

36 The estimation outputs are available from the author upon request.
3TThe estimation is carried out using RATS 5.02. The BHHH algorithm is employed to maximize the
likelihood function.
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estimated coefficients are asymptotically normally distributed. Table 2.4a reports the es-
timated random walk model with conditionally heteroskedastic increments for the Polish

WIG index.

TIME-SERIES PREDICTABILITY

Table 2.4a. GARCH(1,1)-t Model for WIG

Coefficient | Std. Error | t-stat. | Probability
w | 7.66-107* | 1.90-1073 | 0.403 0.687
w | 1.04107% | 0.92-107° | 1.125 0.260
01 0.854 0.089 9.631 0.000
a1 0.082 0.045 1.823 0.068
v 6.521 2.627 n.m. n.m.

The estimated GARCH coefficients §; and «; are significant at the 1% and 10% level,
respectively and their sum is less then one implying that the GARCH model is stationary,
thought the volatility is fairly persistent since (414« ) is close to one. The estimated number
of degrees of freedom of the conditional ¢-distribution is equal to 6.5 which suggests that
the returns on the WIG index are conditionally non-normally distributed.

Table 2.4b. GARCH(1,1)-t Model for BUX

Coefficient | Std. Error | t-stat. | Probability

14 0.005 0.002 2.453 0.014
o 0.133 0.049 2.684 0.007
w | 1.34107% | 8.18-107° | 1.643 0.100
01 0.765 0.108 7.101 0.000
Q1 0.060 0.032 1.863 0.062
v 4.218 0.964 n.m. n.m.
R? = 0.034

To summarize, both heteroskedasticity and non-normality account for the fat tails in the
empirical distribution of the returns on WIG.

Recall that both the Ljung-Box Q test for serial correlation in the squared residuals
and the ARCH-LM test failed to reject the null hypothesis of no ARCH effects in the
residuals from the ARIMA(2,1,0) model for the Hungarian BUX index. From the estimation
output, reported in Table 2.4b we see, however, that the GARCH coefficients 6; and oy
are statistically significant at the 1% and 10% level, respectively. The estimated number
of degrees of freedom is equal to 4.2 which is a very small value given the fact that for
v < 4 the kurtosis of a Student-¢ random variable with v degrees of freedom is infinite.
But the low value of v is not surprising since the empirical kurtosis of the BUX returns is
quite high, equal to 11.67. Thus, as with the WIG index, the leptokurtosis in the empirical
distribution function of the returns on the BUX index is induced by both heteroskedasticity
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and non-normality.

Table 2.4c. GARCH(1,1)-t Model for PX-50

26

Coefficient | Std. Error | t-stat. | Probability

u| 1.27-107% | 7.23-107* | 0.176 0.860
o} 0.633 0.224 2.823 0.005
0, 0.508 0.254 1.996 0.046
w | 1.95107° | 2.19:-107° | 0.887 0.375
01 0.928 0.045 20.36 0.000
a1 0.055 0.030 1.812 0.069
v 7.238 3.475 n.m. n.m.
R? = 0.021

In Table 2.4c we summarize the estimated ARIMA(1,1,1)-GARCH(1,1) model for the
Czech index, PX-50. We obtain very similar results to those for WIG and BUX in that
the GARCH parameters ¢; and «; are statistically significant at the 1% and 10% level,
respectively, and ¢ is much less than ten. Note that although the GARCH(1,1) model is
stationary, 14+ a3 = 0.983, i.e. the volatility of the returns on PX-50 is very persistent.

Table 2.4d. GARCH(1,1)-t Model for DAX

Coefficient | Std. Error | t-stat. | Probability
1 0.004 0.002 2.319 0.020
w | 3.14-107° | 2.58-107° | 1.219 0.223
01 0.807 0.053 15.30 0.000
a1 0.186 0.053 3.531 0.001
v 18.62 12.74 n.m. n.m.

Finally, we examine the German index DAX (Table 2.4d.). Surprisingly, the estimated
number of degrees of freedom of the conditional Student-¢ distribution for returns is quite
large compared to the those for the market indices of the Central-European stock markets.
It falls into the inconclusive region defined in Connolly(1992) and hence it is difficult to
comment on the distributional properties of returns without further testing. Intuitively,
since the GARCH parameters are highly significant and the volatility of returns is very
persistent (d; + a3 = 0.993) it may be the case that the excess kurtosis in the DAX returns
is induced primarily by conditional heteroskedasticity®®. To test this hypothesis rigorously,
we employ the likelihood ratio tests discussed in Section 1.4.2.

Table 2.5 presents the likelihood ratios for a) the null hypothesis that the returns on the
corresponding market indexes are conditionally normally distributed (1/v = 0), and b) the
null hypothesis of unconditionally Student-¢ distributed returns with v degrees of freedom

38 A GARCH(1,1) model with the restriction that oy + d; is called an integrated GARCH(1,1) model,
denoted IGARCH(1,1) (see Bollerslev and Engle, 1986). The volatility is not covariance-stationary in this
model, i.e. a shock to volatility has a permanent effect on the level of volatility. Moreover, the unconditional
variance for an IGARCH model does not exist. Since a; 4 47 is close to one for PX-50 and DAX, we might
be interested in testing the restriction that a; +9; = 1. But since the asymptotic properties of an IGARCH
model in moderate samples are not yet well-understood (see Bollerslev et al., 1992), we leave this test to
further research.
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(a; = 81 = 0). The likelihood ratios are asymptotically y2-distributed with a) one, and b)
two degrees of freedom. The 5%-critical values are thus 3.84 and 5.99, respectively. Note,
however, that according to Bollerslev (1987) the distribution of the test statistic LR1/u—0
in samples of moderate sizes tends to be more concentrated towards the origin than the
X3 distribution and hence a test based on the 3.84 critical value has lower size (is more
conservative). Bollerslev(1987) provides the appropriate 5%-critical value, 2.71.

Table 2.5. LR Test Results
0 LRl/v:O LRa1=61:O
WIG | 6.521 | 11.50%* 16.04*
BUX | 4.218 | 52.97* 16.52*
PX-50 | 7.238 | 7.82* 13.76*
DAX | 18.62 | 2.35 61.37*

*significant at the 1%-level

The null hypothesis of unconditionally Student-t distributed is decisively rejected for all four
market indices. These findings are in line with our estimates of the GARCH parameters:
they all were statistically significant. Hence, conditional heteroskedasticity is present in
stock returns across all markets. The null hypothesis of conditional normality is rejected
for the Central-European stock market indices. The likelihood ratio test fails to reject the
null for the German DAX. Again, these results are in accordance with our estimates of
v: the smaller the ¥, the larger the likelihood ratio for the null hypothesis of conditional
normality. To summarize, on the basis of the GARCH-t model and the likelihood ratios
we have found that in case of the returns on the Central-European stock market indices,
both conditional heteroskedasticity and non-normality account for excess kurtosis in the
empirical distribution functions of index returns. For the German index DAX, the picture
is less clear cut, though it appears that the primary source of the 'fat tails’ in the empirical
distribution is time-varying volatility.

Table 2.6. LR Test Results
LR)—o | LR;=0
WIG | 1.30 6.01%*
BUX | n.m. 2.21
PX-50 | 3.10 0.07
DAX | n.m. 0.01

*significant at the 5%-level

In Section 1.4.4. we introduced two extensions of a simple GARCH(1,1) model specifica-
tion. First, we considered an asymmetric impact of positive and negative shocks to returns
on their expected volatility (TARCH). Second, we included the expected volatility term,
ht, into the mean equation for returns (ARCH-in-mean). Both alternative specifications
can be tested using the usual likelihood ratio. Table 2.6 reports the likelihood ratios for a)
the null hypothesis that the shocks to returns have a symmetric effect on future volatility
(A = 0), and b) the null hypothesis of risk-neutrality of investors (7 = 0). Under both
null hypotheses the likelihood ratios are asymptotically y2distributed with one degree of
freedom, hence the 5%-critical value is equal to 3.84. Note that we do not report the values
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of LRy—g for BUX and DAX indices because the estimates of the constant term w in the
TARCH variance equation are negative which violates the assumption that all GARCH
coefficients be positive (a negative w may cause h; to be negative for some ¢ which is not
consistent with the non-negativity property of variance). For WIG and PX-50 the null hy-
pothesis that the shocks to returns have symmetric impact on volatility cannot be rejected
on the conventional significance levels. Turning to the null hypothesis of risk-neutrality,
the likelihood ratio test fails to reject the null for BUX, PX-50 and DAX, but does reject
it at the 1% significance level for the Polish WIG index.

Table 2.7. GARCH-M-t Model for WIG

Coefficient | Std. Error | t-stat. | Probability
14 -0.030 0.0144 -2.077 0.038
s 0.817 0.377 2.167 0.030
w | 853-107° | 6.42-107° | 1.328 0.184
01 0.875 0.060 14.49 0.000
o 0.071 0.033 2.136 0.033
v 6.406 2.457 n.m. n.m.

Since the null hypothesis of risk neutrality was rejected in case of the WIG index, we now
estimate the ARCH-in-mean model assuming conditional Student-t distribution of the error
terms. Table 2.7 summarizes the estimation output. The estimate of m, which measures
the degree of risk aversion, is positive and significant at the 5% level. It implies that the
investors trading on the Polish stock market are risk-averse: their require higher returns in
periods when they expect higher volatility (risk)*’. The fact that expected volatility, hy, is
significant in the mean equation has also important implications for return predictability.
To see this, recall that h; is a function of past squared residuals from the mean equation.
The expected return on the WIG index for period ¢ + 1 based on the information available
in period ¢, can be thus written as

E [T’t+1 | q)t] = N + 7Tht+1, (143)
= p+7(w+ 0k + oig), (1.44)
= p+r((+9(L)e), (1.45)

where (L) is an infinite-order polynomial in the lag operator’’. Now because both h;
and &2 are known at time ¢ the return for period ¢ + 1 is predictable from the time series
of historical volatility and past squared residuals. The conclusion that WIG’s returns are
predictable is in contradiction to the result of the robust variance ratio test for the null

3There has been evidence in the literature on the ARCH-in-mean models of the sensitivity of the para-
meter estimates to the distributional assumptions made to obtain the estimates by MLE (see Bollerslev et
al., 1992, for an overview). It has been reported, for example, that by changing the conditional distribution
from normal to Student-¢, the estimated 7 dropped substantially and was no-longer significant. When we
use normal distribution to estimate the ARCH-in-mean model for the WIG index, we obtain & = 7.73 with
(Bollerslev and Woodridge, 1991) robust p-value equal to 0.087. Thus the sensitivity observed on developed
markets carries over to the Polish stock market.

10We assume that §; < 1 and hence the GARCH(1,1) process can be expressed as an infinite order
ARCH.
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hypothesis of random walk. But this should not be surprising. From equation (1.9) we see
that the variance ratio test, by construction, has power only against linear dependencies in
the time series of returns. Equation (1.43), on the other hand, implies that in the ARCH-in-
mean model there is a correlation between current return and lagged squared disturbances.
It follows that the variance ratio test cannot detect such non-linearities and hence fails to
reject the null hypothesis of random walk*'. The ARCH-in-mean model therefore provides
us with an important insight into the time-series predictability of stock returns.

Table 2.8. Diagnostic Tests
WIG | BUX | PX-50 | DAX
(4) 2.27 | 2.46 | 3.92 6.39
Q(8) 3.95 | 5.11 | 6.99 11.91
2

Q(12) | 1253 | 7.72 | 9.47 | 19.05
Q%(4) | 239 | 254 | 2.07 | 1.60
Q%) | 11.73| 4.26 | 16.57% | 4.67
Q%(12) | 15.23 | 5.62 | 20.64% | 4.93

)
BDS(2) | -0.97 | -0.51 | 0.35 | 0.58
(4) | 045 | -0.08 | -1.14 | 0.09
BDS(6) | 1.08 | 0.83 [ -1.97% | 0.57

*significant at the 5%-level

Finally, having estimated the corresponding ARIMA-GARCH models for the studied
stock market indices, we should perform diagnostic testing to asses whether the models are
correctly specified. We start by testing the standardized residuals for serial correlation.
This may seem superfluous, for the ARIMA models were specified in a way removing
possibly all autocorrelation in the residuals, but because we did not report the estimates
and diagnostic checks before for the sake of brevity, we should do it now. The first three
rows of Table 2.8 therefore report the Ljung-Box Q statistics applied to the standardize
residuals from the models of Tables 2.4b,c.,d and 2.7. Clearly, the null hypothesis of no serial
correlation cannot be rejected on the conventional significance levels and hence the mean
equations appear to be correctly specified. Next we run the Ljung-Box Q test on the squared
standardized residuals (we label the test statistic Q2 to emphasize that the test is run on
squared standardized residuals). The null hypothesis of no serial correlation in squared
standardized residuals can be rejected only for the PX-50 index. Hence the GARCH(1,1)
model in this case fails to appropriately fit the volatility process. No reasonable alternative
specifications, however, have been found to perform better*?. Finally, we apply the BDS
test on the standardized residuals to determine, whether the GARCH model removes all
non-linearities in the time-series of returns. We set the proximity parameter to 0.5 and run

41To detect non-linearities in stock returns, we could also apply the BDS test to the returns. But since
we have seen that the stock returns are heteroskedastic the result of the BDS test would be necessarily
ambiguous: we would not know whether we should attribute the rejection of the did null hypothesis to
non-linearities in the mean or non-linearities in the variance.

42The correlogram of the squared standardized residuals reveals that there is a significant spike in both
the autocorrelation and partial autocorrelation functions at lag 7. This indicates that a GARCH(1,8) may
better fit the data. Some of the estimated coefficients in this model are, however, negative, which is rulled
out by assumption. The estimates are available from the author upon request.
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the test for embedding dimensions 2,4, and 6. The null hypothesis that the standardized
residuals are 7id can be rejected at 5% for PX-50 index only, which is consistent with the
findings of the Ljung-Box Q test. To summarize, the diagnostic checks performed on the
standardized residuals provide convincing evidence that, except for the PX-50 index, the
ARIMA-GARCH models were appropriately specified and can thus be used for rational
predictions of both index returns and their volatility.

1.7 Concluding Remarks

The analysis of stock return predictability performed in the previous section was aimed
at detecting regular patterns in stock prices. We investigated time-series predictability of
three Central-European stock markets - Czech, Hungarian and Polish, using weekly data
on respective major value-weighted market indices. For comparison, we also considered
the predictability of the German index DAX. We extended the previous empirical work by
explicitly modeling the ’fat tails’ in the unconditional distributions of stock returns using
a GARCH-type model with Student-¢ distributed disturbances. To briefly summarize our
analysis, we found that:

1. The Central-European stock prices do not follow random walk,

2. Stock returns are predictable from the time-series of historical returns using a linear
(ARMA) or non-linear (ARCH-in-mean) parametric model,

3. Stock return volatility changes over time and can be predicted using a GARCH-type
model,

4. Empirical density functions of stock returns exhibit excess kurtosis which can be
attributed to both conditional heteroskedasticity and non-normality.

We hasten to emphasize that the predictability of stock returns need not be a symptom
of market inefficiency (recall equation (1.3)). Even in an efficient market stock returns may
be correlated simply because the expected return systematically changes over time. But
our analysis did not study the way expected return is determined at all and hence any
conclusion regarding the EMH is impossible.

Moreover, the fact that stock prices contain predictable components does not necessarily
imply that the predictability is economically significant. We have mentioned earlier that
some of the empirically observed predictability may be indeed spurious, induced by non-
synchronous trading and /or the bid-ask spread. We will examine this possibility in greater
detail in Chapter 3. But even if the predictability in the Central-European stocks is real, it
is quite unclear whether is can be exploited to earn superior returns. The ARIMA models
for PX-50 and BUX are poorly determined (the R? is equal to 0.021 and 0.034, respectively)
and we have not developed and followed any out-of-sample trading strategy based on our
estimated models that could be compared to a passive trading strategy to see whether our
active trading approach provides higher return. Nor have we taken into account transaction
costs that may well wipe out any incremental return yielded by the active trading strategy.
These questions are definitely worth further research and we will try to address them in
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Chapter 4 where we develop a dynamic trading strategy based on a maximally predictable
portfolio.

Our empirical findings have also important implications for asset pricing. Consider, for
simplicity, the well-known Black-Scholes model for pricing European-style call options on
a non-dividend paying stock?®. This model is derived under three crucial assumptions: a)
log-stock prices follow random walk, b) returns are normally distributed, and c) volatility
is constant through time. But non of these assumptions are satisfied empirically, so the
Black-Scholes cannot be used for rational pricing of options on the Central-European stock
market indices.

The reader may now wonder why we have undertaken the lengthy endeavour of studying
time-series predictability when we now conclude that the results are far from being clear-
cut. We hope to have provided a natural starting point to further investigation into the
sources and patterns of stock return predictability. Only when we learn more about the
time-series behavior of stock returns from a purely econometric point of view can we think of
exploiting the forecastability of returns by means of a particular trading strategy. Knowing
the empirical autocorrelation function can guide our selection of a candidate theory for
studying the extent of spurious autocorrelation in stock returns. And as we just discussed,
the time-series and distributional properties can help us identify an appropriate asset pricing
theory (and, of course, reject a misspecified one).

#3Black and Scholes (1973).



Chapter 2

Cross-Country Predictability and
Cointegration

In the previous chapter, univariate time-series techniques were applied to study the pre-
dictability of selected Central-European stock market index returns. The individual time
series were treated as if they evolved independently from one another. The advent of new
technology and the ongoing market integration around the world, however, imply that na-
tional stock markets may indeed exhibit some degree of co-movement and in that case it is
necessary to study the predictability of stock returns in a multivariate context. The concept
of cointegration will be invoked in this chapter to investigate whether the Czech, Hungar-
ian, Polish and German stock markets are linked through common stochastic trend(s). We
will apply the multivariate cointegration analysis developed in Johansen (1988, 1991) to
stock index prices expressed in (i) local currencies, and (ii) in Euros. We consider both
alternatives for the following reason. Internationally trading investors may or need not
hedge their positions in foreign stocks against exchange rate movements. Those investors
who immunize their portfolios against foreign exchange risk are primarily concerned about
stock returns in local currencies. On the contrary, if an investor does not hedge her portfolio
against exchange rate movements, the rate of return on her portfolio is composed of both
the return in local currencies and exchange rate appreciation/depreciation. To satisfy both
classes of investors we perform the cointegration analysis on stock index prices expressed
in local currencies as well as in FEuros.

The chapter is organized as follows. In Section 2.1, we review informally the theoret-
ical arguments for stock market co-movements commonly used in the empirical literature.
Section 2.2 is dedicated to unit root testing methodology. In Section 2.3 we present the
definition of cointegration and the methodology of the Johansen cointegration test. We
also show that a vector autoregression of cointegrated variables can be alternatively ex-
pressed in an error-correction form which is particularly useful for studying the long-term
and short-term relationships among cointegrated variables. Section 2.4 contains a brief
data description. The emprical results of cointegration tests and error-correction model
estimation are reported in Section 2.5. We conclude with a short discussion in Section 2.6.

32
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2.1 Stock Market Co-movements

There are various hypotheses explaining national stock market integration. First, the on-
going economic globalization and market liberalization increase economic interdependence
among countries. As a result, the macroeconomic fundamentals of national economies be-
come more interrelated and in some groups of countries even converge. And since stock
market returns are generally believed to be primarily driven by economic fundamentals,
it follows that countries with co-moving macroeconomic variables will also tend to have
integrated stock markets. A prominent example is provided in the seminal paper by Yang
et al. (2003). They investigate stock market integration within the European Monetary
Union'. Yang et al. (2003) argue that the introduction of a new common currency and
a single monetary policy among eleven EU member countries should result into increased
integration of their respective stock markets. The empirical results support this hypothesis.
Yang et al. (2003) note, however, that the increased degree of integration can also be at-
tributed to ”faster information transmission and processing due to technological advances,
recent consolidation and merger of stock exchanges in Europe” (Yang et al., 2003, p.17).

Forbes and Rigobon (1999) provide a similar explanation for stock market co-movements.
They distinguish among three different types of shocks affecting economic fundamentals and
thereby stock returns: (i) aggregate shocks affecting the fundamentals of more than one
country, (ii) country-specific shocks affecting the economic fundamentals of other countries,
and (iii) shocks which are not explained by fundamentals and are thus considered as pure
contagion. The reader can easily come up with examples for the three types of shocks so
we will not discuss them in detail here’. The conclusion of Forbes and Rigobon (1999) is
that there exist strong stock market linkages due to shocks other than contagion.

The fact that stock markets are cointegrated has important implications for joint mar-
ket efficiency. According to Granger (1986), if two stock markets are jointly efficient they
cannot be cointegrated. If two markets were indeed cointegrated then the prices from
one market could be used to forecast the prices from the other, which violates the mar-
ket efficiency hypothesis. This fact will become apparent later as we define cointegration
formally. It is important to note, however, that market co-movements in general do not
necessarily imply inefficiency. Even if two markets are not cointegrated, their returns can
be contemporaneously correlated and hence the markets "move together” and are jointly
efficient.

Finally, cointegration of national stock markets implies that it is not possible to diversify
internationally®. This follows immediately from the fact that cointegrated markets exhibit
co-movements and hence a steady decline in one market is followed by a steady decline in
other markets. The systematic risk cannot be therefore diversified away and it is not in
interest of investors who seek diversified portfolios to invest in cointegrated stock markets.

Although the literature on cointegration among developed stock markets is fairly volu-
minous?, this is not the case for the Central-European emerging markets. In a pioneering

Yang et. al. (2003) also provide an extensive overview of the empirical literature on cointegration
among European stock markets.

2See Forbes and Rigobon (1999, p.6-7).

3See, for example, Phylaktis and Ravazzolo (2000).

4See, for example, Chan et al. (1997) and the references therein.



CHAPTER 2. CROSS-COUNTRY PREDICTABILITY AND COINTEGRATION 34

work, Neubauer (2001) tests for cointegration among the Czech, Hungarian, Polish and
German equity markets in the period 1994:1 to 1998:2 with weekly index prices expressed
in terms of Deutschemark. When using the PX-50, BUX, WIG and DAX indices, respec-
tively, he finds evidence of a significant cointegrating relationship among the markets under
study. Neubauer (2001) also investigates the behavior of the cointegrating relationship over
time by running the test in two consecutive non-overlapping subsamples and concludes
that cointegration found in 1993:1-1996:12 disappears in 1997:1-1998:2. In our analysis,
we extend and update the work by Neubauer (2001) by considering more recent data set
(1999:1-2002:12) and perform the analysis on stock index prices expressed in local currencies
as well as in terms of Euro.

2.2 Unit Root Test

This section provides a brief overview of the methodology of the Augmented Dickey-Fuller
unit root test developed by Dickey and Fuller (1979). Let y, denote a log-stock price at
time ¢. Suppose that the log-stock price process {y;} can be modeled as an autoregressive
process of order p, i.e. y, ~AR(p):

Yt =+ QY1+ Golr—2 + - + OpYi—p + €t (2.1)

where {g;} is a white-noise sequence. The process in (2.1) is stationary provided that all
roots of the polynomial

1—¢1z—¢222—---—¢sz:O (2.2)

lie outside the unit circle. If one of the roots of (2.2) is unity and the other roots are outside
the unit circle, the process that generated 1 is said to contain a unit root. A process y; that
has a single unit root is non-stationary but stationarity can be achieved by first-differencing
the series y;. For the purpose of testing for a unit root in a time-series it is more convenient
to rewrite equation (2.1) as follows®:

Yo = p+ 0t + pye1 + G AY 1 + Ay 2+ (1 AYr pr1 + &, (2.3)

where p =) 7, ¢; and (; = —) 7\, #;,j = 1,2,...,p — L. Under the null hypothesis,
y; obeys a unit root process with drift, i.e. § =0 and p = 1 in equation (2.3). Under the
alternative hypothesis, y, is trend-stationary and § # 0 and p < 1. If the time-series under
study does not appear to be trending but does appear to have a non-zero mean, the test
equation (2.3) is estimated without the deterministic trend term d6¢. The null hypothesis is
then that g, follows a unit root process without drift, i.e. u =6 =0 and p = 1, and under
the alternative hypothesis, 3, is a stationary process, i.e. u # 0, 6 = 0 and p < 1. In both
cases, equation (2.3) is estimated by OLS and the null hypothesis of a unit root (p = 1)
is tested by referring the t-statistics corresponding to the coefficient p to the appropriate
critical values tabulated by Dickey and Fuller (1979)°.

’See Hamilton (1994, p. 517) for derivation.
6Under the null hypothesis of a unit root, the test statistic does not have a standard distribution. Dickey
and Fuller (1979) therefore tabulate critical values calculated by Monte Carlo simulation. The crutial
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There are several methods which can be used to determine the optimal number of lags
in the test equation (2.3). One approach is to assume some maximum number of lags, p™**,
estimate equation (2.3) with p™**—1 lags and test the null hypothesis that  m.x_; = 0 using
the usual t-test. If the null hypothesis cannot be rejected then the regression is reestimated
with p™® — 2 lags and the process is repeated until the null hypothesis (max_; = 0 cannot
be rejected for some i. The optimal number of lags used for the Augmented Dickey-Fuller
test is then set equal to p™** — ¢. Alternatively, one can use some information criteria
to determine the number of lags in (2.3). The two widely used are the Akaike (AIC)
and Schwartz (SIC) information criteria. As a diagnostic check for the appropriateness of
the selected number of lags, the Ljung-Box Q-test” for the presence of autocorrelation in
residuals should be used: if the regression is correctly specified, the should be no significant
autocorrelation among the residuals.

2.3 Cointegration and the Error-Correction Model

In this section we define cointegration and describe the methodology of the Johansen
(1988,1991) maximum likelihood analysis of cointegrated systems.

Definition 1 Lety; denote an (n x 1) vector time series. The vector time seriesy; is said
to be cointegrated if each of the series is individually integrated of order one, i.e. 1(1), and
there exists some nonzero (n x 1) vector v such that the linear combination of the series
~Ty, is stationary. A vector satisfying this condition is called a cointegrating vector.

The cointegrating vector is usually perceived as defining an equilibrium relationship
among the individual nonstationary variables comprising y,;. In particular, the equilibrium
is given by 47y, = 0. The intuition behind this interpretation is that if ~ is a cointegrating
vector, the linear combination 47y, is stationary and thus any deviation from the equi-
librium relationship at time ¢, defined by 4’y, = 0, is transitory. Hence if the system is
shocked in period ¢, the shock dies out over time and the system returns back to its equi-
librium. It has to be noted, however, that the term ”equilibrium” used in the context of
cointegration does not necessarily imply anything about the economic equilibrium. Rather
it describes the tendency of a system of economic variables to move toward particular
outcomes (Granger, 1986).

The interpretation is, however, less clear-cut in cases when there are more than one
cointegrating vectors. It can be shown that in a system with n variables there can be up
to n — 1 linearly independent cointegrating vectors (up to a normalizing constant)®. The
number of cointegrating vectors is called the cointegrating rank of the vector time series
y+. Another important insight, due to Stock and Watson (1988), is that in a system with

assumption made in this simulation is that the innovations are homoskedastic and normally distributed.
We have seen in the previous chapter that this assumption is not valid for stock returns. When normality of
homoskedasticity assumptions are questionable, Davidson and McKinnon (1999) suggest using asymptotic
critical values for the ADF test, which are independent of the these assumptions (provided, of course, that
the sample is reasonably large).

"Ljung and Box (1978).

8For an informal but intuitive proof of this result, see Greene (2000, pp. 791).
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n variables and h cointegrating vectors the variables y;; comprising the vector y; share
exactly ¢ = n—h common deterministic time trends and g common random walk variables.
This property and the fact that the equilibrium errors 4”y, are transitory induce the co-
movement of the y;; “s.

To test for the number of significant cointegrating vectors of y;, Johansen (1988, 1991)
develops methodology based on full-information maximum likelihood estimation. Following
Johansen (1988,1991) we assume throughout this Section that y; can be modelled as a
V AR(p) process, i.e.

Vi = Aot Ay + Aoy o+ - -+ Ay + & (2.4)

As shown in Hamilton (1994, pp. 549), any VAR(p) process in the form (2.4) can be
alternatively represented as follows:

Ay = G Ay 1+ CAY o+ + € 1A pi1 + Ao + CoYio1 + &, (2.5)

where {(=> " | A; — I, and {, = P 1A for s =1,2,...,p— 1. Expression (2.5)
is the error-correction form of a cointegrated system. If there are exactly h cointegrating
vectors, then the matrix ¢, can be written as a product of two (n x h) matrices a and ~:

Co=—a". (2.6)

The matrix ~ is composed of the h cointegrating vectors, and the matrix « is the matrix of
weights with which each cointegrating vector enters the n equations. The decomposition of
¢ in (2.6) illuminates, why (2.5) is called the error-correction model for a vector time series
y:: an equilibrium error in period ¢t — 1, given by 47y;_1, tends to be corrected through
the parameters of the matrix « in period ¢.

Since the (n x n) matrix ¢, is a product of two (n X h) matrices, it has rank h, which
is the number of cointegrating vectors. Johansen (1988,1991) exploits this property to
build a test for the number of cointegrating vectors: he first estimates equation (2. 6) and
then examines the rank of ¢ o by testing for the number of characteristic roots of Co that
insignificantly differ from zero. In a system of n variables with exactly h cointegrating
vectors, the matrix ¢, has n — h characteristic roots equal to zero. Hence the test statistic
for the null hypothesis that there are h or less distinct cointegrating vectors against a
general alternative is given by:

)\trace<h’) =-T i log(l - 5\2) (27)

where the j\zs are the characteristic roots of & o ordered such that Ay > Ay > -+ > A,,. To test
the null hypothesis of h cointegrating vectors against the alternative of h + 1 cointegrating
vectors, we use the test statistic

Amax(h, b+ 1) = =T'log(1 = Apy1). (2.8)

The likelihood ratio test statistics (2.7) and (2.8) do not have the usual x? distribution.
The appropriate critical values for (2.7) and (2.8), obtained by Monte Carlo simulations,
are provided by Johansen and Juselius (1990).



CHAPTER 2. CROSS-COUNTRY PREDICTABILITY AND COINTEGRATION 37

Cointegration has important implications for investigating stock markets co-movements.
In some studies, the stock market interlinkages and short-term dynamics are analyzed using
a VAR model for stock returns (i.e. first differences of log-stock prices)?. Another approach
is to test for Granger causality between two markets. But from expression (2.5) follows,
that none of these approaches is valid if the stock markets under study are cointegrated: if
a cointegrated system is modelled as a VAR in differences, we have a misspecification error
since the error-correction term is not included as a regressor in (2.5). And the same holds
for the usual Granger-causality test based on the equation!”

Ay = p+ oAy + asAyo + -+ -+ 1Az + ByAxy_o + -+ - + 4. (2.9)

Hence, it is of crucial importance to test for cointegration among the variables under study
before we select a method for describing the dynamics of the system. When the null
hypothesis of no cointegration cannot be rejected, VAR in first-differences or Granger
causality analysis are valid tools. If, on the contrary, there is at least one cointegrating
vector, the error-correction representation in equation (2.5) is the only appropriate model
for studying the short-term and long-term dynamics of the system.

Figure 2.1. Log-Index Prices over Time
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2.4 Data Description

To perform the cointegration analysis described above we focus on the four-year period
from January, 1999 through December, 2002. We use weekly closing nominal prices of
the following indices: DAX (Germany), BUX (Hungary), PX-50 (Czech Rep.) and WIG
(Poland). These value-weighted indices are widely used in empirical studies on emerging
markets and are believed to well describe the evolution of the corresponding equity markets.

9See, for example, Koch and Koch (1993).

10The variable Az, is said to Granger-cause Ay, if lagged values of Az, help to forecast Ay, . The
Granger causality test is an F-test for the joint significance of the Axy_1,..., Az;—, terms in regression
(2.9).



CHAPTER 2. CROSS-COUNTRY PREDICTABILITY AND COINTEGRATION 38

The prices are expressed (i) in local currencies, and (ii) in Euros and were converted to
natural logarithms for the purpose of this study. The time-series of exchange rates were
standardized to equal unity in the beginning of the sample. The data were downloaded from
Bloomberg. Figure 2.1 depicts the evolution of the indices over the four-year period under
study. The left-hand side graph shows the time-series expressed in local currencies, whereas
in the right-hand side graph, the indices are expressed in Euros. It is hard to comment on
the stationarity of the indices by simply visually inspecting the data. But it appears at
the first glance that the time-series expressed in local currencies do, to some extent, move
together, whereas those expressed in Euros seem to wander arbitrarily far apart from one
another.

2.5 Empirical Results

This section reports the results of the cointegration analysis described above!!. We start
by testing the individual time-series of stock index prices for the presence of a unit root.
We run the Augmented Dickey-Fuller test on levels of the series using test equation (2.3)
with and without trend and then on first differences using test equation (2.3) without
trend. The choice of optimal number of lags in the test equation is given by considerations
of minimizing the Schwarz information criterion and presence of no serial correlation in
the residuals. Table 2.1 summarizes the results. For each index, the inputs in the first
row correspond to the test applied to prices in local currencies whereas the second row
corresponds to prices expressed in Euros.

Table 2.1. ADF Test Results

Levels Levels Differences
with trend without trend without trend
DAX -1.39 -0.01 -13.02**
-2.35 -2.42 -16.49**
BUX -2.09 -1.36 -16.51**
-1.95 -1.68 -12.48**
PX-50 -2.16 -0.72 -12.73*
-2.09 -1.71 -15.63**
WIG -1.99 -2.08 -8.87**

**significant at 5% and 1% level, respectively

The null hypothesis of unit root is clearly rejected for all time series of log-stock index
prices. When applied to first-differences, i.e. stock returns, the ADF test fails to reject the
null hypothesis. We conclude that the log-stock index prices are integrated of order one
and proceed with the Johansen cointegration analysis.

The four stock market index prices are assumed to follow a VAR(p) process. The
optimal number of lags for equation (2.5) was selected using the Hannah-Quinn information
criterion'?. One lag is chosen for the time series expressed in local currencies and no lags for

" The cointegration analysis was performed using EViews 4.1.
12The Schwartz information criterion yields the same optimal number of lags.



CHAPTER 2. CROSS-COUNTRY PREDICTABILITY AND COINTEGRATION 39

those expressed in Euros. Table 2.2 reports the trace test statistics for cointegration. For
each h, the inputs in the first row correspond to the test applied to prices in local currencies
whereas the second row corresponds to prices expressed in Euros. The null hypothesis of
no cointegration is rejected at the 5% significance level for the index prices expressed in
local currencies. The trace test indicates a single significant cointegrating vector. On the
contrary, the null hypothesis of no cointegration cannot be rejected for index prices in
FEuros.

Table 2.2. Trace Test for Cointegration

h Char. Root | Trace Stat. | 5% Critical Value

o160 0.155471 49.02144 47.21
0.076653 30.61035 47.21

at most 1 0.040182 13.53652 29.68
0.043006 14.02228 29.68

at most 2 0.023110 4.924027 15.41
0.022846 4.878938 15.41

at most 3 6.65E-05 0.013962 3.76
0.000345 0.071797 3.76

The A\ax test results reported in Table 2.3 are consistent with the findings of the trace
test: the time series of stock index prices expressed in local currencies appear to be cointe-
grated with one cointegrating vector, but there is no cointegration relationship among the
index prices in terms of FEuro.

Table 2.3. \,..-test for Cointegration

h Char. Root | Trace Stat. | 5% Critical Value

Joro 0.155471 35.48492 27.07
0.076653 16.58807 27.07

at most 1 0.040182 8.612493 20.97
0.043006 9.143346 20.97

at most 2 0.023110 4.910064 14.07
0.022846 4.807141 14.07

at most 3 6.65E-05 0.013962 3.76
0.000345 0.071797 3.76

From the cointegration analysis follows that the appropriate models for studying the
stock market co-movements and predictability of stock returns are the error-correction
model for prices in local currencies and Granger causality tests for stock returns in terms
of Euro. We start by estimating the former and then turn to the analysis of the latter.

The estimated error-correction model is summarized in Tables 2.4a and 2.4b.

Table 2.4a. Cointegrating Vector

const. | DAX | BUX | PX-50 | WIG
Coeff.(v) | 10.78 | 1.00 | 0.44 | 2.60™ | -4.07**

“*significant at 1%
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The long-run relationship among the German, Hungarian, Czech and Polish stock markets
is given by the cointegrating vector in Table 2.4a. Without loss of generality, the coefficient
for the DAX index was normalized to unity. From the estimated error-correction model of
Table 2.4b follows that only the Czech and Polish stock markets respond to a deviation from
the long-run relationship: the estimated o8 are significant at the 1% level for PX-50 and
WIG but are insignificant at the conventional levels for DAX and BUX indices. The short-
term dynamics, given by the estimated (; matrix, reveals that each and every individual
stock market can be predicted using lagged returns from other markets. Surprisingly,
lagged returns on the Czech index significantly predict the returns on the German DAX.
We have no reasonable explanation for this finding. The degree of predictability of stock
index returns as measured by the coefficient of determination is fairly high compared to the
estimated ARIMA models of Chapter 1. For example, lagged returns on the four indices
explain about 32.5% of the variance of weekly returns on the Hungarian BUX in the error-
correction equation as compared to the 3.4% in the ARIMA(2,1,0) model. Similarly, the
R? for the PX-50 is about seven times higher that in the ARIMA(1,1,1). Hence the long-
term and short-term interactions among the German, Hungarian, Czech and Polish stock
markets can be exploited to substantially increase the predictability of individual stock
index returns.

Table 2.4b. The Error-Correction Model

A(DAX) A(BUX) A(PX-50) | A(WIG)
Coint.Eq.(ex) | -0.000677 0.009596 -0.051192** | 0.034923**
A(DAX)_ 4 0.145368 0.144581* 0.141677* 0.083333
A(BUX)_; -0.135455 -0.313462** | 0.009323 -0.063152
A(PX-50)_ 0.444787 | 0.640493** | 0.194253** | 0.484016**
A(WIG)_, 0.013138 0.170601* | -0.267150** | -0.022882
const. -0.001772 0.001597 0.000983 -0.000297
R? 0.151573 0.325874 0.155483 0.260624

*, %k

significant at 5% and 1% level, respectively

We now turn to the analysis of the time series of stock index prices expressed in Euros.
Since the null hypothesis of no cointegration cannot be rejected in this case we examine
the cross-country predictability of stock returns by pairwise Granger-causality tests. The
test is based on equation (2.9). Under the null hypothesis that Az, does not Granger-
cause Ay, the terms Axz,_y,..., Ax,_, should be insignificantly different from zero. We
use a Wald-type test for the null hypothesis of no Granger-causality’®. The test statistic
is asymptotically x? distributed with p degrees of freedom. To select the optimal number
of lags in regression (2.9) we consider the Schwartz information criterion and check for
the presence of autocorrelation in residuals. Table 2.5 summarizes the Granger-causality

13The usual F-test is not appropriate in our setting, since it rests on the hypotheses of normality of
residuals and fixed regressors. But we saw in the previous chapter that this assumption is likely to be
violated for stock returns.



CHAPTER 2. CROSS-COUNTRY PREDICTABILITY AND COINTEGRATION 41

analysis applied to stock index returns in terms of Euro.

Table 2.5. Granger-causality Tests

Dep.var. | Test-stat. | Granger-causality R
DAXwd BUX | e | 375 | DAX BOX v | 0oi
DAX and PX-50 | by | i | DAXPX mo | 0020
DAXwd WIG | ywig | Va5 | pax wiaim | oo
BUX wd PX50 | pcs | ogs | BUX-oPXo0me | 0ss
BUXad WIS | wig | o | pux wiciae | 006
PXA0and WIG | bl | 000 | WIGSPRCA no 0019

**significant at 5% and 1% level, respectively

Surprisingly, the Polish WIG index appears to Granger-cause the German DAX. We would
anticipate the opposite to hold since the German stock market is much larger and more
mature than the Polish one. Similarly, the result of the test that the Czech index Granger-
causes the Polish WIG seems to be quite intuitively implausible. To summarize the Granger-
causality tests, some of the four studied stock markets appear to be interlinked and lagged
returns from one market can have some forecast power in other markets. The predictability
of individual stock index returns as measured by the coefficient of determination can in some
cases increase when lagged returns from other stock markets are included in the regression.
This conclusion is similar to that obtained for the time-series expressed in local currencies.

2.6 Concluding Remarks

The purpose of this chapter has been to investigate cross-country predictability and cointe-
gration among the German, Hungarian, Czech and Polish stock markets. We have applied
the multivariate cointegration analysis developed by Johansen (1988,1991) to the time-series
of weekly prices expressed in both local currencies and in Euros.

First, the stock market index prices expressed in local currencies were found to be
cointegrated with a single significant cointegrating vector. The estimated error-correction
model implies that only the Czech and Polish stock markets respond to a deviation from
the long-run equilibrium. All stock markets are, however, influenced by lagged returns from
at least one other stock market. Hence there exists significant cross-country predictability
among the four markets under study and the forecast of future returns on one market can
be substantially improved by including past returns from other markets as well.

Second, there appears to be no cointegration relationship among the stock markets
when the index prices are expressed in terms of Euro. This finding is consistent with the
conclusion of Neubauer (2001) that the cointegration found in the period 1993:1-1997:12 dis-
appears over time. The bivariate Granger-causality test results indicate Granger-causality
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running from the German DAX to the Hungarian BUX, from the Czech PX-50 to the Polish
WIG, and surprisingly, from the Polish WIG to the German DAX. The predictive power of
the foreign indices is usually quite low as measured by the coefficient of determination. It is
thus questionable, whether the empirically observed Granger-causality can be exploited to
earn above average returns, especially when adjusted for transaction costs and the costs of
hedging against exchange rate movements. Further research is therefore required to clarify
this question.



Chapter 3

Nonsynchronous Trading and
Predictability

It is the common practice in the vast majority of stock market empirical studies to implicitly
assume that the data used for the study are sampled at equidistant points in time. Usually,
a researcher chooses a particular data frequency (daily, weekly, monthly, etc.) best suiting
the purpose of his/her analysis and takes for granted that the data were really sampled
at the times implied by the data frequency. To give an example, it is fairly common to
use daily data on stock prices for testing various hypothesis about emerging stock markets
because the history of these markets is short, which rules out the possibility of obtaining a
sample of plausible size with lower data frequency. The daily stock price is defined as the
closing security price on that day. Hence the researcher uses stock prices prevailing at the
time of the stock exchange closing. Note, however, that these prices were not necessarily
sampled at time of closing of the exchange. If the last trade in the security occurred an
hour before the close then the price for that day was actually sampled an hour before the
close and not at the close. Clearly, if trading in a security does not take place continuously,
daily data are not sampled equidistantly. Furthermore, if a security does not trade at all
on a particular day, the return for that day is mistakenly assumed to be zero, even though
the theoretical return for that day may be non-zero but was not realized because the stock
simply did not trade (due to low liquidity, fixed transaction costs, etc.). It is the purpose of
this chapter to show that nontrading induces spurious autocorrelation into the time-series
of observed stock returns. But when the researcher ignores the effect of nontrading (i.e.
if he/she ignores the fact that the data were sampled at non-equidistant points in time)
he/she must necessarily confuse spurious autocorrelation with the autocorrelation inherent
to the returns. As a result, completely false inferences about the hypothesis under study
may be drawn!.

In a similar way, the nonsynchronicity of data sampling has important implications for
the time-series properties of portfolio returns. To develope some intuition for this claim,
consider for simplicity a portfolio comprised of two stocks only: a stock of a large corporation

! As an example, a researcher may find a stock market to be weak-form inefficient due to high autocor-
relation in stock returns, although the market may be fairly efficient once the effect of non-synchronous
trading (and hence spurious autocorrelation) is accounted for.

43



CHAPTER 3. NONSYNCHRONOUS TRADING AND PREDICTABILITY 44

trading almost continuously? and a stock of a small company trading less frequently. If news
affecting the aggregate stock market arrives shortly before the close of the stock exchange
it is likely to be incorporated into the closing prices of the frequently traded stocks. But
the stocks of small companies need not trade immediately after the arrival of the news and
hence their prices may reflect the news with a lag of a day. As a result, our two-stock
portfolio will exhibit spurious autocorrelation induced by nonsynchronous trading, even
though the individual stocks have the same underlying stochastic processes driving their
returns.

The Lo-MacKinlay model of nonsynchronous trading is discussed in this chapter (Lo and
MacKinlay (1990)) to address the problem considered above. In the first section, the model
is derived under the hypothesis that the common factor generating ”virtual” stock returns
follows a stationary first-order autoregressive process. This generalization is proposed in
Lo and MacKinlay (1990) although they do not derive the model explicitly under this
hypothesis. We present the formulas for the mean, variance, autocovariance and cross-
autocovariance of individual as well as portfolio returns under the more general hypothesis.
The implications of nonsynchronous trading on the predictability of the Central-European
stock index returns are discussed in the concluding Section 3.2.

3.1 An Econometric Model of Nonsynchronous Trad-
ing

Following Lo and MacKinlay (1990) we will assume throughout this chapter that there are
N securities whose unobservable ”virtual” returns r; at time ¢, ¢ = 1,.., N are generated
by the following stochastic process:

Tit = Uy + BzAt + Eits (31)

where A; is a zero-mean common factor and ¢ is a zero-mean idiosyncratic noise satisfying
E [eigji—n] = 0 for all 4, j,n and ¢. Unlike Lo and MacKinlay (1990), however, we allow the
common factor A; to follow a stationary first-order autoregressive process:

where {n,} is a white noise process and « € (—1,1). We further assume that A; is inde-
pendent of €;;_,, for all i,n and t. Under these conditions the moments of the unobserved
virtual returns are given by:

Elral = (3.3)
52
Var|ry] = 5?1 —noﬁ +o2, (3.4)
a"o?
Cov [rig, Tiv—n] = 5?1 ~,n >0, (3.5)
—

where 02 = Var [n,] and 02, = Var [e4].

2By ’almost continuously’ we mean within intervals of tens of seconds.
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In each period there is some positive probability p; that security ¢ does not trade. The
observed return 7Y, in such period is simply equal to zero, although the virtual return r;; is
given by (3.1). In the following period security i again does not trade with probability p;
and the process continues. If the security trades in period ¢ and did not trade for the past
n consecutive periods then the observed return for period t is simply defined as the sum of
the virtual returns for the n periods that the security did not trade and the virtual return
for period ¢t. To determine the impact of nontrading on the observed returns ¥, we need
to define a binary stochastic process that will govern the trading/nontrading process. This

process is identical to that in Lo and MacKinlay (1990).

Definition 2 Let 6, and Xy (k) be the following Bernoulli random variables:

5. — { 1 with probability p;,
v 0 with probability (1 — p;),
Xit(k) = (1=0u)0u—10—2-Si
B { 1 with probability (1 — p;)pk,
N 0 with probability 1 — (1 — p;)pF,
Xu(0) = 1—64.

where we assume that d; is an independently identically distributed random variable for all
1.

Now having defined X;;(k) the reader can easily verify that the process generating the
observed returns % described in words above is equivalent to the following definition:

Definition 3 The observed return process % is given by the following stochastic process:

=Y Xa(k)rii,
k=0

for all 1.

If security i does not trade at time ¢, then J;; = 1, thus X;;(k) = 0 for all k£ and the
observed return at time is 7%, = 0. If security 7 does trade at ¢ then the observed return
at ¢ is equal to the sum of the virtual return at ¢, r;; and its past k;; virtual returns, where
the random variable k;; denotes the number of past consecutive periods for which security
1 did not trade. We call l;;it the duration of non-trading and define it as

ki = 3 {H 5it_j} . (3.6)

k=0 \j=1

Using the duration of nontrading the observed return can be equivalently defined as

Fit
ri = Zﬁt—k- (3.7)
k=0
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Although this definition may seem to be a more intuitive one, Definition 1 will prove to be
more useful in the subsequent derivation of the moments of 7%. This is because it is quite
difficult to work with a random sum of random variables like that in (3.7).

To understand how the probability of non-trading effects the duration of nontrading
consider the expected value and variance of /;;Z-t:

E[kt] - 15’@, (3.8)
Var [k;t] - ﬁ. (3.9)

Since the derivation of (3.8) and (3.9) is trivial, we leave it to the reader for the sake of
brevity. If, for instance, p; = % then the average number of consecutive periods for which
security ¢ does not trade is equal to one. If p; = ‘—; then the expected duration of nontrading
is equal to 4. Clearly, if the security trades at all times (i.e. p; = 0) then k;; is deterministic
and equal to zero.

To see how nonsynchronous trading affects the time-series properties of returns we need
to derive the moments of individual and portfolio returns. This is done in a way that is
very similar to the case when A; is an #d process (i.e. when o = 0) and the reader who
is not interested in studying the lengthy proofs of the theorems below may wish to simply

check, that setting o = 0 throughout the theorems reproduces exactly the results obtained
in Lo and MacKinlay (1990).

3.1.1 Individual Returns

In this paragraph we derive the mean, variance, autocovariance and cross-autocovariance of
observed individual stock returns. For expositional convenience, we summarize the results
in a theorem and present the proof in the Appendix.

Theorem 4 Under Definition 2 the observed return processes {r%,}, i =1,.., N, are covariance-
stationary with the following moments:

E[T?t] = Mzw
2

2ap; o 2p;
Var [Tgt] = Ugi—’_ﬁg (1+ 1—ap> 1—77042 * 1—29'”227

2 affor(1-pi)* \ ar—pl
C 0 0 _:uzpz ( 1— O[2n T—ap;) > a—p; n > 07 a %pza
ov [Tz’t’rz’t—&-n] - 52 2
((1+p2) Mz) pz , > 07 a = pj,

+1

o2 (1—p;)(1—p;) a’pj—ap?
9n J n ) Pz J J X
66 (1-pip;)(1—a?) o +pj +9 1—ap; + 1 ap + a—p; ) Oz;ép],

oy (1—pi) pip; .
66 m <1 1—pi]pj>p?7 a=p;, n=>0.

COU [r?t? T?t+n] =

From Theorem 4 we see that nontrading does not affect the mean of observed returns.
The effect on the variance of observed returns is ambiguous. Assume, for simplicity, that
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p; = 0. Then Var[r})] is larger then Var [r;] if

2ap; 14 ap;
1 = > 1. 3.10
( +1—ap¢) 1—ap; ( )

Since a € (—1,1) and p € (0,1) it follows that (3.10) holds for « positive and hence
nonsynchronous trading increases the variance of observed returns. The opposite is true
for a negative &. When the mean of returns yu is non-zero, the analysis is more complicated
but similarly to our simple example, Var [r}] can be either higher of lower then Var [r;]
depending upon the values of the parameters of the model.

Unlike in Lo and MacKinlay (1990) our specification of the common factor allows for
a more general pattern of autocorrelation. Depending upon the values of the parameters
of the model, the autocorrelation of observed returns can be either positive or negative.
In both cases it decays as n — oo but the pattern of the decay can be very different
for different parameter values. The autocorrelation function can take virtually any form.
To give a few examples, we set y; = 0.1,5, = 1,02, = 0.1, and 0} = 0.15 and plot
the implied autocorrelation functions of observed returns for different values of o and p;.
As shown in Figure 3.1, the serial correlation can decay geometrically, it can also first
rise and then gradually fall, or it can exhibit oscillatory decay. It is apparent from the
formula for Cov [r%,79,,,] that we would obtain similar results when we plotted the cross-
autocorrelation function of observed returns on two assets.

Figure 3.1. Autocorrelation Function of rY.
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3.1.2 Portfolio Returns

We have seen in the previous paragraph that the moments of the individual observed returns
are complicated functions of the parameters of the underlying stochastic processes. As such,
they are hardly to be a subject of an empirical application because the number of parameters
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to be estimated is too large. Moreover we are interested in the effect of nontrading under
the conditions of an autocorrelated common factor and not in estimating a large number of
parameters, which would only make the analysis more complicated without gaining much
insight into the main subject of this chapter.

In this paragraph, we show that if a sufficient number of individual stocks with identical
nontrading probabilities are grouped into a portfolio, the formulas for the moments of
the portfolio observed returns simplify tremendously. For instance, the formula for the
first-order autocorrelation coefficient of the portfolio observed returns is a function of the
probability of non-trading, p;, and the autoregressive parameter, «,only. This specification
allows us to decompose the empirically estimated autocorrelation coefficient into the part
induced by nontrading and the part is inherent to the virtual returns. We start by defining
the portfolio return, then invoke the Kolmogorov Strong Law of Large Numbers to simplify
the stochastic process generating observed returns of well-diversified portfolios and finally,
we derive the portfolio observed return moments.

Definition 5 Let I, denote the set of securities with identical probabilities of non-trading,
Pa, and let N, denote the number of securities in I,. Let %, i € I,,denote the observed
return on security ¢ in time t. Then the observed return on a portfolio a is given by

Under Definitions 2 and 3 the observed portfolio return can be written as

1
LI I (3.11)
@ icly
1 o
A Z Z Xit(k)rit—, (3.12)
@ iel, k=0
- 1 Ay 1
— Z (ﬁ Z 1 Xt (k) + N Zﬁzth(k‘) + ~ Zgit—kXit(k> . (3.13)
k=0 el a ier a i

Now the three sums in the parentheses can be simplified by applying the Kolmogorov Strong
Law of Large Numbers. Since by assumption the nontrading stochastic process X (k) is
independent across securities and since we also assume that X;;(k) is independent of €;;_
for all securities at all lead and lags, and €;_; is independent across securities at all leads
and lags, the summands in the terms in parentheses in (3.13) are independent random
variables and hence

1 1 a.s
@ iel, L™ % iel, J
1 1 a.s.

D BXulk) = B |- D BiXulk)| =50, (3.15)
@ el L™ % sel, J
1 1 a.s.

- > enwXu(k) - E ~ > git_kxixk)] 5 0. (3.16)
@ iel, @ iel,
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It is straightforward to show (see Definition 1) that

E|— Z pXa(k) | = (1= pa)phpe,
L a icl,
E|+ Z B Xu(k)| = (1—pa)pkB,,
L a Zela
Z Eit— szt - 07
ZGI{J.

where p, = Nia > icr, i and B, = Nia > ic1, Bi- Substituting these results into (3.13) the
following equality obtains almost surely as the number of securities, N,, increases without
bound:

o0
o e+ (1= pa)B, Y PhA . (3.17)

k=0
Since this expression is identical to that derived under the hypothesis of an iid common
factor we urge the interested reader to consult Lo and MacKinlay (1990) on further details

on the derivation of (3.17) and proceed with computing the asymptotic mean, variance,
auto-covariance and cross-autocovariance of portfolio returns.

Theorem 6 As the number of securities in portfolios A and B increases without bound,
the first and second moments of portfolio returns are given by

E [Tgt] - Mm

Var %] = B2 L= D 1+ 20Pn %
" “\1+ Dk l—ap.) 14+a?

1—px 0'21 O"n«&»l o :44*1 apr—a Z

Bi (1-(§-Prj(1)+042) (an +p: + 1p_;‘pp + Z_pnp ) , Q& 7é Pk
2

527(1+ E (1+n+ 20 )p,_i, a =Py,

Cov [ Tyt gt+n] =

nt1 nt1 _
prtapp o"pr—apy
« +pz+ 1 Nap,,i i Q”ipn = Qa %
C 0 ,.0 _ 1+ 29Pn ) Pk,
orr [Tﬁﬂ Tﬁt—&-n] = 1—apgk

1—pw)?
<1+%>p2, a = py,
(1—pa)(1—ppyo ntly . apy a”py—apy
c 0 BuBo eyt (0‘”1)?*01 e i el o,
ov [ ataTbt+n] = (1—pa 1 B
ﬁﬁbl papb)(1+p)< tn 1 ppb>pb’ &= Py

where n > 0, u, = NLK Y oicr. i and B, = NLK >icr. Bi and the symbol = denotes that the
equality obtains only asymptotically.

Again, the formulas for portfolio observed returns are fairly complicated functions of the
underlying parameters of the stochastic processes. Unlike for individual returns, however,
the autocorrelation coefficient of observed portfolio returns is a function of the probability
of non-trading p,, the autoregressive parameter «, and the order of autocorrelation n only.
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This specification allows for a direct analysis of the effect of nonsynchronous trading on the

time series properties of observed portfolio returns. In particular, we can decompose the

estimated autocorrelation coefficient of observed returns into the part induced by nonsyn-

chronous trading and the part that comes from the autoregressive common factor. To see

this, let us concentrate on the first-order autocorrelation coefficient of portfolio returns:
Oz2pn+ap2

Ot Pet o0 atp

1+12_“pr’; 14 ap,

(1) = Corr [Tgtargt—l-l} = (3.18)

The first-order autocorrelation coefficient can be consistently estimated from the time-series
of observed portfolio returns. The probability of non-trading can be also estimated directly
from the time-series of trading volumes of the stocks in the portfolio, which we denote
{vit}?zl .1 € I,. This is done by constructing a binary sequence {5it}tT:1 for each 7, where

5it:{ 1 if vp=0

0 otherwise

Clearly, d;; is equal to one if security ¢ does not trade at time ¢, i.e. when the trading volume
is equal to zero at t, and zero otherwise. The estimator of the probability of non-trading is

then constructed as
R 1 1
Pn =N g (F g 5z‘t> ; (3.19)

® €Ty Fiel,
where the subscript of the first sum indicates that we sum over particular dates that are
elements of the set T},. For example, Lo and MacKinlay (1990) use only month-end trading
days over (nonconsecutive) sixteen years to estimate p,. Hence in their case, T, includes only
month-end trading days. The term in the parentheses is simply the fraction of securities in
portfolio x that do not trade at time ¢. Thus, the estimator p, is an average of the fraction
of securities in the portfolio that do not trade at dates ¢t € T,,. Note, that since we assume

Figure 3.2. Behavior of p, (1)

i,
e
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I

s

that the portfolio x is well-diversified, i.e. N, is large, not much is gained in efficiency
by choosing a large set T,,. Asymptotically (as N, — 00) the term in the parentheses
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approaches the true value of the parameter p, and summing over the elements of 7, and
dividing by Nz only reproduces the same result. Hence, when the portfolio is sufficiently
large, month-end trading days (e.g. approximately 1/21st of all daily observations in the
sample) are sufficient to estimate p,; efficiently.

Now having consistently estimated p, (1) and p,, we can compute the estimate of the
unobserved parameter « by inverting the function p, (1) and substituting p,.(1) and p, for
p..(1) and p, respectively. This yields a consistent estimator &:

ﬁl-i - f)m(l)
Iaﬁi)m(l) -1

of the autoregressive parameter c. When trading takes place at all times (p, = 0) then
the only source of autocorrelation in observed returns is the common factor. In such a
case, the first-order autocorrelation coefficient of observed returns is equal to «, and we
denote it p(1). Whenever p, > 0, however, the coefficient is given by (3.18). This implies
a straightforward decomposition of the estimated first-order autocorrelation coefficient:

pe(l) = p(1) +[p.(1) = p(1)],

. [&Jrﬁ ]
= -+ — —
1—ap,

o=

(3.20)

When the probability of nontrading is equal to zero, the only source of serial correlation in
observed returns is the autocorrelated common factor. For p, # 0, the first-order autocor-
relation coefficient is an increasing function of p, since

apli(]‘) 1 - Oé2

= >0
Opy. (14 ap,)?

for all admissible o and p,. See Figure 3.2 for a graph of p, (1) as a function of « and p,.

In their original model, Lo and MacKinlay (1990) also investigate the impact of daily
nontrading probability on the time-series properties of weekly, monthly and lower-frequency
returns. Although it would be computationally straightforward to do such analysis in our
framework, we refrain from that, because the formulas for the moments of observed returns
are already quite complicated functions of the underlying parameters. We anticipate that
the results would be qualitatively fairly similar to those of Lo and MacKinlay (1990), e.g.
that the spurious autocorrelation induced by nontrading decreases as the data frequency
decreases.

3.2 Concluding Remarks

The Central-European stock markets are known for a lower degree of liquidity than the
developed equity markets. A prominent example is the Prague Stock Exchange, where out
of a total of 76 listed securities, only 7 stocks trade on a daily basis in recent years. The lig-
uidity in the rest of the market is nil. Unfortunately, the econometric model of nontrading
derived above cannot be directly applied to the Czech, Hungarian and Polish stock returns.
The number of infrequently traded stocks with similar nontrading probabilities is to low for
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the asymptotic portfolio moments to reasonably approximate their finite-sample counter-
parts. But the model still sheds some light on the possible sources of the predictability of
the Czech and Hungarian stock index returns found in Chapter 1. Both the Czech PX-50
and the Hungarian BUX indices contain infrequently traded securities. Although we cannot
quantify the effect of nontrading on the time-series properties of the indices directly, it is
highly suspicious that the autocorrelation of their returns is entirely real. The problem of
spurious autocorrelation is necessarily present and hence the predictability of the Czech
and Hungarian stocks should be evaluated using indices composed of daily traded securities
only. But this fact is often ignored in the empirical literature, and the PX-50 and BUX
indices are widely used in various empirical studies® because it is believed that these in-
dices best mirror the evolution of the respective equity markets. As a result, spurious a real
autocorrelation may be confused, leading to false inferences about the hypotheses under
study.

3See, for example, Fildcek et al. (1998), Hanousek and Filer (2000), and Gilmore and McManus (2001).



Chapter 4

Maximizing Predictability of Asset
Returns

We have seen in the first two chapters of this thesis that the Central-European stock
market index returns contain predictable components. In the previous chapter, we have
shown that the predictability of individual or portfolio returns as measured by the first-
order autocorrelation coefficient may be in part spurious, induced by infrequent and/or
nonsynchronous trading. Thus the remaining question which needs to be addressed is
whether our findings of return predictability can be useful in the real-world investment
process.

The purpose of this chapter is to investigate whether the predictability of stock returns
is economically significant, i.e. if it can be exploited in practice to earn abnormal returns
when adjusted for transactions costs. To do this, we first present the methodology of max-
imizing predictability of stock returns. Although individual security prices can be barely
predictable, optimally formed portfolios may exhibit much higher degree of predictability.
We then develop a simple dynamic trading strategy based on the optimal portfolios and
asses its performance using various measures of market timing. To avoid the problem of
nonsynchronous trading we apply the analysis to the most liquid Central-European stocks
only, i.e. to securities trading on a daily basis.

The chapter is organized as follows. In Section 4.1, we briefly discuss the principal
component analysis (PC) and the way it can be used to forecast stock returns from the
time-series of historical returns only. In Section 4.2 we consider the predictive power of
various macroeconomic factors and term-structure variables and present the methodology
of the Maximally Predictable Portfolio (MPP) due to Lo and MacKinlay (1997). Various
measures of market timing and investment performance are described in Section 4.3. Finally,
in Section 4.4. we apply the principal component analysis to selected Czech stocks and the
MPP analysis to selected Polish stocks to forecast their respective returns!. We follow a
simple trading rule, in which we are invested all in a stock portfolio if the expected return

IThe choice of method for maximizing predictability is motivated by previous research. In Hanousek and
Filer (1999), lagged macroeconomic variables were found to Granger-cause stock returns on Polish stock
market, whereas no Granger-causality was found for the Czech stock market. We thus use a multifactor
model for forecasting Polish stock returns with macroeconomic and term structure variables as factors and
use principle component analysis to extract the most important factors that drive the Czech stock returns.
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on this portfolio exceeds that of a risk-free asset and all in the risk-free asset if the opposite
holds. We then evaluate the performance of this trading strategy using the market timing
measures of Section 4.3. We conclude with a short discussion in Section 4.5.

4.1 Principal Component Analysis

A popular approach to studying predictability is to assume a multifactor asset pricing
model and then investigate the predictability of the individual factors®. This is a two-step
procedure. First, a linear cross-sectional model for stock returns is estimated:

rf — o+ JTFt + €y, (41)
where r; = [ry; rop - - rnt]T is a vector of n stock returns in period ¢, F, = [Fyy Fy - - Fpt]T
is a vector of p factors in period ¢, and &; = [e1; €3¢ -+ €, IS & vector white noise with

covariance matrix 3. a denotes an (n x 1) vector of intercepts and ” is an (n x p) matrix
of coefficients. When the p factors are known, the system of regression equations (4.1) can
be estimated equation-by-equation by OLS?. If F, is unknown, the principal component
analysis can be applied to extract the most important factors driving the stock returns.
Let I, = Var|ry) denote the covariance matrix of r;. The first principal component is
a linear combination 4%, r; that has the maximum possible variance among all linear
combinations satisfying > 7 72 = 1, i.e. vh; it is a solution to the following optimization
problem:
arg max Var ['yTrt} st. yly=1.
YER™

It can be shown? that vpq; is given by the eigenvector corresponding to the largest eigen-
value \; of the covariance matrix I',.. The first principal component is therefore a portfolio
that captures most of the variance of the stock returns. Since stock portfolio weights w;
sum up to one, we further standardize the vector v po; such that wper = Yper/(Yhert),
where ¢ is an (n x 1) vector of ones. Consequently, the rate of return on the first principal
component portfolio is equal to 7! = wL, ;.

Second, we analyze the predictability of the most important factor, i.e. the portfolio
given by the first principal component weights wh.,. A straightforward measure is the

squared first-order autocorrelation coefficient of r£'“1, which corresponds to the R? from
the regression
PO~ a il e (12)

where {et}thl is a white-noise sequence with Var [¢;] = o2. Note, however, that the pattern
of autocorrelation of r”“! may be more general than that implied by an AR(1) process. In
such a case, a relevant measure of the predictability of rZ“! is the R? from 'the appropriate’
ARM A model>. We will apply this approach to selected Czech stocks in Section 4.4 and

asses the out-of-sample predictability of r7¢L.

2See Lo and MacKinlay (1997), and the references therein.

3Since each equations contains the same regressors, there is no gain by running SUR (Seemingly Unre-
lated Regressions).

4See Haerdle and Simar (2001), Theorem 2.5.

By ’appropriate’ we mean appropriate in the Box and Jenkins (1984) sense.
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4.2 The Maximally Predictable Portfolio

Lo and MacKinlay (1997) propose an alternative to cross-sectional factors derived by the
principal component analysis. They show that although rZ“? captures most of the variance
of the n stock returns, it need not reflect much of the inherent stock return predictability.
Instead of maximizing variance, they construct a portfolio by maximizing predictability as
measured by the well-known coefficient of determination.

Assume we regress the stock returns on lagged rather than contemporaneous values of
factors driving stock returns:

r'n =« + 5TFt_1 + Et. (43)

Each of the n coefficients of determination, R? i = 1...n, measures the predictability
of corresponding individual stock returns included in r;. Now suppose we form a linear
combination vXr; of the n stocks, and consider the coefficient of determination when we
regress v'r, on a constant and F,_;:

_ Var [’YT(‘sTFt—ﬂ] _ v Var [6TFt—1] Y _ ey

R? = = .
™) Var [yTr,] YV ar vy~ Iy

(4.4)

where Var [5TFt_1] =I'r and Var[r)] =T,. To maximize the predictability of a portfolio
is then equivalent to choosing -« such that (4.4) is maximized and = is a portfolio, i.e.
~T1 = 1. But because R?(vy) = R?*(k~) for any constant k, we can maximize (4.4) without
imposing the constraint and then rescale the solution 4 such that its elements sum up to
unity. The maximum R?(v) is given by the largest eigenvalue \; of the matrix B =TT
and is attained by the eigenvector v,,pp corresponding to the largest eigenvalue of BS.
Properly normalizing 7,,pp then yields the maximally predictable portfolio wy/pp.

It is important to realize that the probability distribution of the maximum R? is not
the same as the distribution of the individual maximands. Lo and MacKinlay (1997) run a
Monte Carlo experiment to compute the critical values for the maximal R? under the null
hypothesis of no predictability. They run their experiment for different number of assets
(n), factors (p) and observations. To give an example of their results, for five assets, six
conditional factors and 47 observations, the appropriate 5% critical value for the maximal
R? is 45.2%, whereas without maximization, the appropriate 5% critical value is only 22.4%.
These results imply the need to interpret the maximum R? with caution. A high value of
the maximum R? may be a symptom of data-mining and not genuine predictability.

The vector of factors ¥, 1 = [Fy; Fy - -- Fpt]T may include various economic variables
such as dividend yields, term-structure variables and leading economic indicators believed
to influence stock returns. The selection of factors is usually motivated by theoretical
considerations, but intuition and the results of previous research also play an important
role. The literature on the cross-section of expected returns is extremely voluminous and
an interested reader is urged to consult Lo and MacKinlay (1997), Fama (1991) and the
references therein.

Before we turn to empirical applications, two econometric issues regarding the model
in equation (4.3) are worth noting. The selection process of factors almost always in-
volves some sort of data mining, which biases the usual statistical inference based on the

For proof of this result, see Lo and MacKinlay (1997) and the references therein.
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t-statistics in regression (4.3). Moreover, as shown in Ferson et al. (2003), if the true (but
unobserved) expected return is highly persistent, the data mining problem interacts with
spurious regression bias even though realized stock returns are not very persistent them-
selves”. Consequently, Ferson et al. (2003) find that many of the regressions in financial
economics literature may be indeed spurious. Note that in our case, the problem of spuri-
ous regression may make it impossible to evaluate the economic significance of stock return
predictability. If the regression in (4.3) is spurious due to highly persistent expected return,
then the model has no forecast power, and hence any dynamic trading strategy based on
the model has no incremental value. We (falsely) conclude that the predictability of stock
returns is economically insignificant, although the true expected return is highly autocor-
related and thus forecastable! Since it is difficult to correctly adjust the critical values
for spurious regression bias in practice, we use standard critical values in the subsequent
empirical application, but bare in mind that spurious regression bias may be present when
interpreting the results.

4.3 Measures of Market Timing and Investment Per-
formance

In the last two sections we presented the methodology for maximizing predictability of asset
returns. We now develop a simple trading rule based on the PC1 or MPP portfolios and
present three measures of market-timing® aimed at determining whether the predictability
in stock returns is genuine and economically significant.

Let 25, = F [rf+1 | <I>t] .,k = PC1, MPP, denote the expected return on an optimal
portfolio x for the period ¢ + 1 on the basis of the information set ®, available at time t,
and let 7,1 denote the rate of return on a risk-free asset for the period ¢ + 1, whose value
is know at time ¢. Our simple asset-allocation strategy takes the following form®:

9t+1 = 1if Zf—‘,—l > 141, (45)

0:y1 = 0 otherwise,

where 60,4 is the fraction of assets invested in the portfolio £ during the period t+1. Hence,
we are invested all in the optimal stock portfolio if the expected return on this portfolio
exceeds the return on a risk-free asset, and all in the risk-free asset if the opposite holds.
Let x411 denote the realized return on this trading strategy in period ¢ + 1. Clearly, x;,; is
given by

Ty = Oparpg + (1= Op)re.

"We can write the rate of return on a stock as composed of two parts: 7; = E [ry | ®;_1] + &, where
Ery | ®;—1] denotes expected return for period ¢ on the basis of the information set ®;_; and & is a
zero-mean noise component. Since g; usually accounts for a substantial portion of the variation in 7, the
persistence of r, may be small although E [ry | ®;_1] is highly autocorrelated.

8We use the term 'market timing’ although we are not timing the whole market portfolio but rather our
optimal portfolio. No confusion should arise.

9This simple trading strategy is fairly common in the literature. See, for example, Merton (1981),
Henriksson and Merton (1981), Breen, Glosten and Jagannathan (1989) and Lo and MacKinlay (1997).
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We assume that the equity market is sufficiently large and all investors behave as price-
takers, i.e. no single investor alone can influence either the stock market prices or the
risk-free rate of return in any period.

There are various approaches to evaluating performance of an active asset trading strat-
egy. The simplest and probably most frequently used is the Sharpe ratio (Sharpe, 1966)
defined as _ _

S A= ra— 7“’

OA

where 7, is the average rate of return on an actively managed portfolio A (in our case
Ta = ), 7 is the average risk-free rate of return and o4 is the standard deviation of 74.
Higher value of S, implies better performance. In a similar way, Treynor (1965) proposes
to asses a portfolio’s performance using the following ratio:
TA—T
TA = )
Ba

where 3, is the portfolio’s beta obtained from the usual CAPM regression

(rac — 1) = a4+ Ba(rag — 1) + €ar (4.6)

Again, higher value of T4 implies better performance. The only difference between the
Sharpe and Treynor ratios is that the former uses total portfolio risk (04) to standardize
the excess return (74 — ), whereas the latter uses systematic risk only as measured by the
beta coefficient. A common drawback of evaluating performance by S, and/or T is the
absence of a statistical theory that would allow for testing hypotheses about the difference
between two Sharpe or Treynor ratios: although S4 > Sp (T4 > Tp) for some portfolios
A and B, we do not know if the difference is statistically significant. More sophisticated
methods for performance measurement have been therefore suggested in the literature.

4.3.1 The Henriksson-Merton Approach

Henriksson and Merton (1981) propose two measures to evaluate the performance of the
simple trading strategy described above. The first measure is a non-parametric one whereas
the second is parametric. We start with the former.

Let p; denote the probability of a correct forecast in an ”down” market and let p, denote
the probability of a correct forecast in an ”up” market. Formally,

p1 = Prob[0,=0|r; <nry,
pa = Prob[0,=1]|rf >nr].

It is shown in Merton (1981) that p; + po is a sufficient statistic for assessing of forecasting
skills. The forecast has no value if p; + po = 1. A sufficient condition for the forecast to
have a positive value is that p; + po > 1. To test the null hypothesis of no predictability,
i.e. Hy:py + pe =1, against the alternative that p; 4+ ps > 1, it is unnecessary to estimate
either of the conditional probabilities’”. Define the following variables: N; = number of

19GSee Merton and Henriksson (1981, pp. 517-520) for details.
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observations where 7} < r;, Ny = number of observations where r; > r;,, N = N; + Ny =
total number of observations, n; = number of successful predictions, given r; < ry, ng =
number of unsuccessful predictions, given r;* > r;, n = n1+ny = total number of predictions
that r < r,. Under Hy, ny has a hypergeometric distribution that can be asymptotically
approximated by normal distribution:

a N an nlNlNg(N—n)
= N T N3N —1)

Thus Hy : p1 + po = 1 can be tested by referring n; to the critical values of normal
distribution. A disadvantage of the nonparametric approach to testing market timing skills
is that it requires the knowledge of the time-series of forecasts {Gt}tTH, which need not be
publicly observable.

A parametric alternative for testing market timing skills proposed by Henriksson and
Merton (1981) allows for analyzing the incremental performance from macroforecasting
and microforecasting separately. Macroforecasting is forecasting the market as a whole,
i.e. performing market timing. Microforecasting corresponds to forecasting the returns on
individual securities and investing into the securities with positive expected excess returns.
The test is based on the following regression model:

Ty — T =+ 51(7"Mt - Tt) + Boys + €1, (4-7)

where 77 denotes the return on the market portfolio in period t, y; = max [0, 7, — razyl,
and ¢, is a random shock satisfying the usual linear regression assumptions. The intuition
behind equation (4.7) is simple. If the market-timer correctly predicts a ”down” market,
the return he achieves for period ¢ + 1 given by (4.7) is

ze =1 =a+ (B = Bo)(rae — 1) + &1, (4.8)
whereas if he correctly predicts an ”up” market he obtains
Ty — 1t =+ By(rae — i) + € (4.9)

Clearly, if macroforecasting has any value (i.e. if the market-timer is successful in forecast-
ing the market as a whole), the coefficient 3, in (4.7) must be positive and statistically
significant. Indeed, if the market timer has perfect foresight, then 5, = 3, and from (4.8)
the market timer always obtains « + r; in a "down” market, up to an additive noise term
g . Hence he is perfectly immunized against down-side risk. If, on the other hand, the
market timer does not produce any value-added, the coefficient (3, is insignificant in (4.7)
and the return is given by (4.9). But this return can be achieved by a passive buy-and-hold
strategy of investing into a portfolio with beta equal to 3,, and thus there is no gain from
active market-timing. The value to microforecasting is measured by the coefficient a. If
the estimated « is positive and statistically significant then the manager achieves higher
return than what is justified by the systematic risk as measured by the beta coefficient. He
therefore exhibits superior stock selection skills.

To quantify the value of market-timing in dollar terms, Merton (1981) observes that y;
in regression (4.7) is the return on a one-period put option on the market portfolio with a
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current value of one dollar and a strike price equal to one plus the risk-free rate. Let 7,
denote the target beta of the market timer’s portfolio when he predicts a ”down” market and
let 7, be the target beta when the manager predicts an ”up” market. Merton (1981) shows,
that up to an additive noise term the returns generated by the market-timing strategy are
the same as those that would be generated by a protective put option investment strategy
where for each dollar invested, the fraction [pan, + (1 — pa)n,] dollars is invested in the
market portfolio and (p; + p2 — 1) (9, —mn,) put options (per dollar invested) with the return
y; are purchased. The remaining balance is invested into the risk-free asset. The value of
market-timing (per dollar invested) comes from the fact, that the (p; + ps — 1) (ny — 74)
put options are purchased at no cost by investing into the actively managed portfolio. In
equilibrium, the value of market-timing must be the same as the value of the put options
purchased, otherwise arbitrage opportunities would exist. In case of our asset-allocation
rule, n, = S, and 7, = 0, since we are invested all in portfolio x when we anticipate
an "up” market and all in the risk-free asset if we expect a ”down” market (the beta of
a risk-free asset is zero by definition). If f denotes the price of a one-period put option
on the market portfolio with a current price of one dollar and a strike price equal to one
plus the risk-free rate, then our trading strategy is worth (p; + pe — 1) B,.f per period per
dollar invested. When we use monthly data, this implies an annual management fee of
(100)(12) (p1 + p2 — 1) B,.f percent. Note that market-timing has no value if p; 4+ py = 1,
which is an identical condition to that in the nonparametric test.

To compute the value of the market-timing strategy it is unnecessary to estimate either
3. or (py +p2 —1). Henriksson and Merton (1981) show that plim 3, = (py + p2 — 1),
where 3, is an ordinary least squares estimate of 3, from regression (4.7). When the sample
is sufficiently large, the parametric alternative does not require the knowledge of {Gt}tTJrl and
(p1 4+ p2 — 1)5,, can be estimated using OLS. The value of the put option can be calculated
using the well-known Black-Scholes formula'.

4.3.2 The Break-Even Transaction Costs

A direct measure of the economic significance of stock return predictability are the break-
even transaction costs equating the total return on an active market-timing trading strategy
with the total return on a passive investment. Following Lo and MacKinlay (1997) we define

Black and Scholes (1973). The value of the put is given by: f, = N(—dz) — N(—d;), where

(r+ %)
Tt ) = 1
dlE#7 dQEdl—O'm E,

N (o) denotes cumulative standard normal distribution and o2, is the variance of the market portfolio. Note
that the value of market timing can be alternatively expressed in terms of call options, since the put-call
parity implies that the put and call prices are equal in this particular case.
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the end-of-period value of a dollar investment over the entire period as

T

wE (14,
=1
oy

1
Il

[0:(1+78) + (1 = 0)(1+74)],

t=1

where A, P stand for active and passive, respectively. If the active strategy requires k
switches into or out of the portfolio x over the entire investment period, then the one-way
break-even transaction costs 100 x ¢ are a solution to the equation

WE = Wi x (1— o)t

Thus
W/IE 1/k
c=1—|—=— . 4.10
(%) 10
Comparing the implied transaction costs 100 x ¢ with the real-world transaction costs pro-
vides a straightforward measure of the economic significance of stock return predictability.

4.4 Empirical Application

4.4.1 Czech Stocks

The Czech stock market index, PX-50, was found significantly autocorrelated in the period
from 1996:1 to 2002:12 (see Section 1.6). Since the index contains only about 18 stocks,
both liquid and infrequently traded, it is difficult to asses whether the estimated serial
correlation is spurious or not'?. Nevertheless, we can evaluate the predictability of Czech
stocks by focusing solely on the most liquid ones, i.e. those trading on a daily basis. In
particular, we use the time-series of weekly returns on the following stocks trading on the
Prague Stock Exchange: CEZ (CEZ), Ceske Radiokomunikace (CR), Cesky Telecom (CT),
Komercni banka (KB), and Phillip Morris CR (PM). The time period under study is the
same as in Section 1.6, i.e. 1996:1 - 2002:12. The data were downloaded from Bloomberg.

We use the principal component analysis procedure presented in Section 4.1 to evaluate
the economic significance of the Czech stock return predictability. We do not apply the
MPP analysis based on a multifactor model with various economic variables as factors.
This is due to the empirical findings of Hanousek and Filer (2000) that neither lagged
nor conteporaneous macroeconomic variables affect Czech stock returns in the period 1993
through mid-1999. As Hanousek and Filer (2000, pp. 629) write, ”the Czech stock market
appears to have become increasingly divorced from reality”. We are therefore left with

12Recall that the moments of observed returns on portfolios of infrequently traded stocks derived in
Chapter 3 hold only asymptotically, e.g. as the number of securities in the portfolio increases without
bound. Clearly, the analysis does not apply to a portfolio of only 18 stocks.
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time-series techniques only to measure the predictability of Czech stocks.

Table 4.1. First Principal Component Weights

96:1-99:12 | 97:1-00:12 | 98:1-01:12 | 99:1-02:12
CEZ 0.226 0.236 0.223 0.176
CR 0.131 0.099 0.122 0.228
CT 0.156 0.160 0.172 0.244
KB 0.404 0.446 0.431 0.311
PM 0.083 0.059 0.052 0.041
Var. Explained | 56.03% 57.62% 54.66% 46.16%

61

Before we turn to the dynamic asset allocation rule given in (4.5), we make some pre-
liminary checks as to whether the first principal component portfolio wpcy is predictable at
all in various subsamples. It may well be that the autocorrelation in weekly returns on the
PX-50 index is spurious, induced by infrequent trading of the less liquid stocks contained
in the index. In such a case, it would make little sense to run a dynamic strategy using the
liquid stocks, since these can be unforecastable.

Table 4.1 reports the first principal component portfolio weights in four overlapping
subsamples, along with the proportion of the variation in the stock returns explained by
the first principal component. In Table 4.2 are presented the autocorrelation functions of
wpcer in the same four subsamples. The null hypothesis of no autocorrelation up to the lag
given in the parentheses of p(e) is tested using the Ljung-Box Q-statistic!®. The time-series
predictability of the first principal component portfolio is nil in the first three subsamples.
On the contrary, there is significant positive first-order autocorrelation in the wpe; in the
last subsample. The R? corresponding to the regression in (4.2) is, however, only about

6%.

Table 4.2. Autocorrelation Function of wpc1

96:1-99:12 | 97:1-00:12 | 98:1-01:12 | 99:1-02:12
p(1) | -0.020 0.044 0.077 0.248*
0(3) 0.069 0.030 0.054 -0.010*
p(5) 0.117 0.088 0.076 0.001*
p(7) | -0.109 -0.105 -0.109 0.012

*

**significant at 5% and 1% level, respectively

The main result from Table 4.2 is the impossibility of attaining abnormal return by running
a dynamic trading strategy on the first principal component portfolio in the period 1996
to 2002. To evaluate the predictability of the returns on wpeq, it is necessary to compare
the performance of a trading rule based on the out-of-sample forecasts of r’“! with an
unmanaged portfolio over a sufficiently long period. But from Table 4.2 follows that the
rFC! is unpredictable from the time-series of historical returns in the subsamples 96:1-
99:12, 97:1-00:12, and 98:1-01:12. In these time periods, the best one-step-ahead forecast
of the return on wpc; is therefore the unconditional mean of 77“!.  As a result, there

can be no gain from market-timing, and the trading strategy has no value. Of course, the

13Ljung and Box (1979).
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autocorrelation of the returns on wpeq in the subsample 99:1-02:12 can be used to forecast
returns in year 2003, but our sample does not contain the data on stock returns in 2003 to
evaluate the economic significance of predictability in this time period.

4.4.2 Polish Stocks

Since Hanousek and Filer (2000) find that several lagged macroeconomic variables signif-
icantly forecast Polish equity market returns we implement the dynamic trading strategy
based on the maximally predictable portfolio to evaluate the economic significance of Pol-
ish stock return predictability. Using monthly data from 1997:1 to 2002:12, we consider 39
most liquid Polish stocks trading on the Main Market of the Warsaw Stock Exchange. We
group these stocks by sectors into the following five equal-weighted portfolios:

Services (SE) - media, telecoms and IT,

Finance (FI) - banks and insurance companies,

Heavy Industry (HI) - chemical industry, machinery, wood and wooden products,
Light Industry (LI) - food and other light industry,

Construction (CO) - construction and construction materials.

To develop a suitable forecasting model for the returns of these equal-weighted sector
portfolios, we draw on previous empirical results. There is substantial literature document-
ing the predictive power of various conditional factors on both developed and emerging
markets'®. For our analysis, we choose the following conditional factors:

IP; - growth rate of industrial production in month ¢,

IF; - inflation rate defined as a percentage change in the producer price index (PPI) in
month ¢,

GD; - percentage change in the budged deficit in month ¢,
TD; - percentage change in the trade deficit in month ¢,
W1M; - one-month Warsaw Interbank Offer Rate at the end of month t,

M3; - growth rate of M3 in month ¢.
Our multifactor forecasting model is thus given by
r; =+ B1IPi1 + BolF 1 + B3GDi1 + B4 TDi1 + BsWIM, -1 + BgM3i1 + &4, (4.11)

where r; denotes the (5 x 1) vector of returns on the equal-weighted sector portfolios. The
time-series of stock prices and macroeconomic variables were downloaded from Bloomberg.

14Gee, for example, Lo and MacKinlay (1997), Hanousek and Filer (2000), and the references therein.
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To forecast returns, we first estimate (4.11) and compute the maximally predictable
portfolio weights wypp using the first 36 months of our sample, from 1997:1 to 1999:12.
The one-month-ahead forecast is then generated month by month beginning in 2000:1 and
ending in 2002:12 using a rolling procedure, where the earliest observation in the sample is
dropped for each new added, keeping the rolling sample size constant at 36 months. The
coefficients in (4.11) and the MPP weights are therefore updated monthly.

Table 4.3 reports ordinary least squares (OLS) estimates of the multifactor model
(4.11) for the five asset groups, using the first 36-month sample from 1997:1 to 1999:12.
Heteroskedasticity-consistent standard errors are used to asses the statistical significance
of the estimates.

Table 4.3. OLS estimates for sector-grouped portfolio returns

const. | IP IF GD TD WIM | M3 R?
Services -0.039 | -0.473 | 4971 |-0.011 | 0.116 | -2.621 | -2.561 | 0.118
Finance -0.001 | -0.447 | 3.011 | -0.123 | 0.086* | -1.704 | 0.403 | 0.140
Light Ind. -0.003 | -0.515™ | 3.632* | 0.025 | 0.062* | -1.282 | 1.218" | 0.187
Heavy Ind. 0.041 | -0.387 | 5.412 0.145 | 0.002 | -6.032 | 1.218 | 0.173
Construction | 0.005 | -0.531 4.147 0.043 | 0.049 | -2.726 | 0.499 | 0.137

T significant at 10%, 5% and 1% level, respectively

The estimated coefficients for the growth rate of industrial production are uniformly nega-
tive across the asset groups, which is a rather counterintuitive result. We would expect an
increase in industrial production to have a positive impact on the subsequent stock returns.
The estimated coefficients for inflation are all positive as anticipated. If we assume that
expected inflation for the next month is roughly equal to current inflation, then higher
inflation in this month implies higher nominal return on stock in the next month. The
estimated impact of the budget deficit on future stock returns is ambiguous. There is,
however, no sound economic theory indicating any link between those two variables. We
included GD; to the model because it was found significant in Hanousek and Filer (2000).
The negative, although insignificant, correlation between stock returns and the nominal in-
terest rate (WIBOR) is in line with the empirical findings from developed stock markets'®.
Finally, the positive association between the lagged growth rate of money (M3) and stock
returns is quite intuitive, since higher growth rate of money implies higher future inflation
and thereby nominal returns.

Table 4.4a. MPP weights
Services 0.856
Finance 1.118
Light Industry -4.456
Heavy Industry 2.914
Construction 0.567

Having estimated the multifactor model in Table 4.3, the maximally predictable portfolio
can be readily constructed. We assume that unlimited short sales are possible, which

15See Breen et al. (1989) and the references therein.
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allows us to maximize predictability without imposing any constraint on the MPP portfolio
weights. The MPP portfolio wy/pp is the properly normalized eigenvector corresponding
to the largest eigenvalue of the matrix B = I'.'I's. The R? from the regression of the
MPP returns on the conditional factors is then the maximum R?. Table 4.4a reports the
MPP weights and in Table 4.4b are presented the OLS estimates of the multifactor model
n (4.11) for the MPP returns. Heteroskedasticity-consistent standard errors are used to
asses the statistical significance of the estimates.

Table 4.4b. OLS estimates for the MPP portfolio

const. | IP IF GD TD WIM M3 R?
r PP 1-0.283 | -0.998 | -3.798 | -0.670** | 0.372** | 17.416** | 0.451 | 0.379

* kK Kokok

significant at 10%, 5% and 1% level, respectively

Not surprisingly, the maximal R? is larger than the individual R?’s. Although we do not
have in hand the appropriate critical values for the maximum R? under the null hypothesis
of no predictability, given five asset groups, six conditional factors and 36 observation, we
can use as a first approximation the critical value tabulated by Lo and MacKinlay (1997)
for the same number of asset and factors, but 47 observation. The 5% critical values is
equal to 45.2%, which is higher than 37.9% in our model and thus the null hypothesis of
no predictability cannot be rejected in the period 1997:1 to 1999:12.

We now roll the MPP procedure over the entire out-of-sample period from 2000:1 to
2002:12. We do not report the updated coefficient estimates of (4.11) and the MPP weights
for the sake of brewity'. At the end of each month, the MPP portfolio return for the next
month is forecasted and compared with the one-month risk-free rate, which we approximate
by the one-month Warsaw Interbank Offer Rate. When the expected return on the MPP
exceeds that of the risk-free asset, we invest all funds into the MPP. If the opposite holds,
we are invested all in the risk-free asset. As in Section 4.3, we denote by x; the realized rate
of return on this active trading strategy in month ¢, rM*? denotes the rate of return on
the MPP in month ¢, and r; denotes the one-month WIBOR rate for month ¢. To evaluate
the performance of out active asset allocation strategy, we also follow two other strategies:
(i) investing all funds into the MPP in each month regardless of its expected return, (ii)
investing all funds into the risk-free asset in each month. Table 4.5 summarizes the mean
monthly return and monthly volatility for the returns on the corresponding trading strate-
gies and the terminal value of 1000 Polish Zloty in 2002:12 invested into the corresponding
strategy in 2000:1.

Table 4.5. Performance of trading strategies

ACTIVE | MPP RF
Mean Return 3.71% 1.55% 1.17%
Volatility 43.18% | 49.60% | 0.38%
Terminal Value | 3804.59 | 1749.13 | 1525.25

From Table 4.5 follows that our active trading strategy achieved superior performance in
the period 2000:1 to 2002:12. Compared to the strategy of investing every month into

16The MPP weights are available from the author upon request.
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the MPP, our strategy yielded higher mean return with lower volatility. Note, however,
that the volatility of both ACTIVE and MPP strategies is extremely high, and thus these
investments are very risky. To asses the predictability of the MPP, we calculate the one-
way break-even transaction costs according to the formula in (4.10). The ACTIVE strategy
required 10 switches into and out of the MPP, hence the one-way break-even transaction
costs are given by

PN 1/k 1/10
== () |1 (i) [ o0
Clearly, the break-even transaction costs by far exceed those incurred in reality, which
implies economically significant predictability of Polish stocks.

Finally, we asses the performance of our active asset allocation rule using the Henriksson
and Merton (1981) approach. Following Lo and MacKinlay (1997) we assume that the
MPP portfolio can be considered the 'market’. We apply the nonparametric test because
our sample of moderate size only. Out of the total of 36 observations (N = 36), there
are N; = 17 "down” markets, No = 19 ”"up” markets, n; = 11 correct "down” forecast,
and ny = 8 incorrect "down” forecasts. The estimated probability of a correct forecast
in a "down” market is thus p; = 0.647, the probability of a correct forecast in an "up”
market is po = 0.579, and p; + ps = 1.226. Under the null hypothesis of no predictability
(p1 + p2 = 1), ny is asymptotically normally distributed with mean 9 and variance 1.33.
The null hypothesis can be tested by referring 711.1152 ~ 1.733 to the critical values of the
standard normal distribution'”. The 5% critical value for a one-sided test is 1.65. The
null hypothesis can be therefore rejected at the 5% level. Given the monthly volatility of
the MPP portfolio of 49.6%, the average monthly risk-free rate of 1.17% and the fact that
B,.. = 1 (the target beta of our portfolio in the "up” market is the beta of the MPP, which is
equal to unity since we assume that MPP is the "market”), the annual management fee is
estimated to be (100)(12)(0.226)(0.1974) = 60.01% of the value of the portfolio managed.
The source of this extreme management fee is the relatively high value of the protective
put option, which is in turn caused by the high volatility of the MPP portfolio.

To summarize the MPP analysis implemented above, the predictability of Polish stock
returns is economically significant. The one-way break-even transaction costs of 7.48%
imply that it was possible to earn above-average rate of return by means of out market-
timing strategy in the period 2000:1 to 2002:12.

4.5 Concluding Remarks

The aim of this chapter has been to evaluate the economic significance of Czech and Polish
stock return predictability. We applied the principal component analysis to the most liquid
Czech stock and found no significant predictability in their weekly returns for the period
from 1997:1 to 2001:1. This result contradicts our finding of significant serial correlation in
weekly returns on the Czech value-weighted stock index, PX-50. It appears that the auto-
correlation of weekly returns on the PX-50 index is in part spurious, induced by infrequent

17Tt is shown in Henriksson and Merton (1981), that the asymptotic approximation works well even in
moderate samples, provided that N7 ~ N, which is our case.
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trading of the less liquid stock included in the index. Although we cannot quantify the
effect of nontrading directly, due to the low number of infrequently traded stocks contained
in the PX-50 index, the fact that the most liquid Czech stocks are unpredictable implies
that the autocorrelation of returns on PX-50 is almost entirely spurious.

Contrary to the Czech stocks, the predictability of Polish stocks was found economically
significant. We followed an out-of-sample rolling trading strategy based on the maximally
predictable portfolio using monthly returns on five sector-sorted portfolios of the 39 most
liquid Polish stocks. For the out-of-sample period from 2000:1 through 2002:12, our active
asset allocation rule achieved higher average rate of return than that of a passive trading
strategy. The implied one-way break-even transaction costs of 7.48% provide evidence of
economically significant stock return predictability.



Conclusion

The aim of this thesis has been to investigate the predictability of Central-European com-
mon stock returns. We have applied modern econometric techniques to the Czech, Hun-
garian and Polish stock prices and/or returns to learn more about their time-series and
distributional properties. We studied the stock return predictability in both univariate
and multivariate context, focusing on the time-period from 1996:1 through 2002:12. Be-
sides empirical results, we have also provided a brief overview of the underlying financial
theory, and pointed out the difficulties that may arise when interpreting the results. In
particular, we discussed the problem of spurious autocorrelation of stock returns induced
by infrequent trading, and the problem of determining the economic significance of stock
return predictability. In the next few paragraphs, we summarize the empirical findings and
suggest directions for future research.

The Random Walk Hypothesis did not hold on the Central-European stock markets in
the period 1996:1 to 2002:12. Both the mean and the variance of weekly stock returns were
predictable from the time-series of historical returns. We found linear dependencies in the
time-series of Czech and Hungarian stock index returns and estimated simple ARIMA-type
models to learn more about the pattern of serial correlation in the stock index returns. The
coefficients of determination were extremely small for both models (0.034 and 0.021 for
the Hungarian and Czech stock indices, respectively) implying little economic significance
of return predictability. A similar result was obtained for the Polish stock market index,
where the dependencies in returns were found nonlinear (GARCH-M). The behavior of
return volatility was modelled by the simple GARCH(1,1) model under the assumption that
the innovations are conditionally Student ¢-distributed with v degrees of freedom, where v
was treated as an unknown parameter to be estimated. The estimates of v along with the
results of likelihood ratio tests indicate that both conditional heteroskedasticity and non-
normality account for the 'fat tails’ in the unconditional distributions of the stock index
returns. The GARCH(1,1) model performs well in explaining the time-varying volatility of
the Hungarian and Polish indices but fails in case of the Czech stock market index.

We next investigated the stock return predictability in a multivariate context. Apply-
ing the Johansen (1988,1991) multivariate cointegration test we showed that in the period
1998:1-2002:12 the Czech, Hungarian, Polish and German stock market indices were coin-
tegrated when the index prices were expressed in local currencies. This result implies
joint market inefficiency and the impossibility to diversify internationally in the Central-
European region for investors who hedge their stock positions against exchange rate risk.
On the contrary, no cointegration was found for the stock index prices expressed in terms of
Euro. Thus investors from the European Monetary Union member states not hedging their
foreign exchange risk exposures can obtain benefits from international diversification of
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their portfolios. Our results also indicate significant cross-country predictability among the
four markets under study: the forecast of future returns on one market can be substantially
improved by including past returns from other markets as well.

Since all emerging markets suffer from lower liquidity, we dedicated an entire chapter to
studying the effect of infrequent trading on the time-series properties of individual stock an
portfolio returns. We generalized the econometric model of nonsynchronous trading devel-
oped by Lo and MacKinlay (1990) by allowing the common factor generating the ’virtual’
returns follow a stationary first-order autoregressive process. We derived the moments of
individual stock a portfolio returns and investigated the behavior and pattern of autocorre-
lation of observed stock returns induced by the interaction of the autoregressive parameter
of the process for the common factor and the probability of nontrading. Our results imply
that the sign and pattern of serial correlation of infrequently traded stocks (and portfolios of
these stocks) can be fairly general in our specification of the model. Also, our specification
allows for a direct decomposition of the estimated first-order autocorrelation coefficient of
portfolio returns into the (spurious) part induced by nontrading and the (real) part inher-
ent to the portfolio returns. The main conclusion the model of nonsynchronous trading is
that the empirically found predictability of stock returns may be in part spurious due to
infrequent trading. As a result, it cannot be exploited to earn abnormal returns.

Unfortunately, the model could not be applied to study the effect of nontrading on the
time-series properties of Central-European stock portfolios directly. The number of illiquid
stocks traded on these markets is too low for the estimated moments of observed returns to
reasonably approximate their asymptotic counterparts derived in our model. Nevertheless,
some informal arguments are still possible to make. We showed that the weekly returns on
the Czech stock market index PX-50 are significantly autocorrelated, whereas the returns
on the most liquid Czech stocks (i.e. stock trading on a daily basis) approximate white
noise. Since the PX-50 index also includes securities with extremely high probabilities of
nontrading, it follows that much of the serial correlation in the returns on PX-50 is spurious
due to the effect on nontrading. Of course, a more rigorous analysis is needed to gain a
better insight into this matter but this is likely to remain impossible within the framework
of the Lo and MacKinlay (1990) model of nonsynchronous trading in the near future, given
the evolution and prospects of the Central-European stock markets.

Finally, in the last chapter of this thesis we evaluated the economic significance of
the predictability of Polish stock returns. We argued that stock return predictability is
economically meaningful if and only if it can be exploited to earn statistically significant
abnormal return. To test this hypothesis, we focused on 39 most liquid Polish stocks
traded on the Warsaw Stock Exchange and considered the out-of-sample period from 2000:1
to 2002:12. For sector-grouped portfolios, we estimated a multifactor forecasting model
with macroeconomic and term-structure variables as factors in each month and formed
the maximally predictable portfolio (MPP). The expected return on the MPP for the next
month was then compared with the risk-free rate and all (virtual) funds were invested into
the asset with higher expected return. This trading strategy was rolled over the entire out-
of-sample period. Comparing the ex-post return on our active trading strategy with the
return on a passively managed portfolio yields a direct measure of economic significance
of stock return predictability. The implied break-even transaction costs of 7.48% by far
exceed those incurred in practice, providing evidence on the existence of profitable trading



CONCLUSION 69

strategies based on return predictability.

We have to emphasize once again that significant stock return predictability need not
be a symptom of market inefficiency. To test market efficiency rigorously we would have to
assume a particular asset pricing model and take into account the (dynamic) risk preferences
of investors. But as we argued above, this necessarily leads to the joint hypothesis problem
making it virtually impossible to test market efficiency in practice.

The analysis of stock return predictability on Central-European stock markets is far
from being complete. We characterized the time-series and distributional properties of
stock index returns, while pointing out to the problem of spurious autocorrelation induced
by infrequent trading. We also stressed the importance of evaluating economic significance
of return predictability and presented an example from Polish stock market. It is the task
of future research to asses the predictability of the Czech and Hungarian stock returns
in greater detail as well. Also, a formal analysis of the nonsynchronous trading effect is
required to learn more about the pattern of autocorrelation of stock returns. Besides time-
series predictability, it is also important to study cross-sectional predictability of stock
returns. Numerous asset pricing models await to be put to test and can help us better
characterize the stock return generating process. To summarize, this thesis is just a starting
point to the analysis of the nature and sources of stock return predictability on the Central-
European stock markets.



Appendix - Proof of Theorems

Proof of Theorem 4.

The proof of part (i) of the theorem is identical to Lo and MacKinlay (1990) since A,
has a zero mean and the fact that A; is an AR(1) process has no effect on the mean of rJ,.

To prove (ii) we first derive the second uncentered moment of r%:
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Similarly, to derive the autocovariance, we first compute F [r?trg +n}:
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when « # p; and n > 0. When a = p; the last term in the product is not defined since the
denominator is equal to zero. It can be, however, continuously defined by the its limit as
a — p;. To see this, define f: (—1,1) — R as follows:

flay= C=B (14)
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where p; € (0,1). Now the limit of f(«) as @ — p; is given by
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where the second equality follows from the L’hospital rule. Substituting into (12) and
setting o = p; throughout the expression produces
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The formula for autocovariance then follows from the result that Cov[z,y] = E[zy] —

E[z] Efy].

Finally, we derive the cross-autocovariance of individual returns. The computation in
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this case is a bit more involved. As before, we start by computing E [r} il Onl:
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Now to remove the absolute value operator, we consider five mutually exclusive cases. First,
let k> 1. Since k > 0,1 >0 and n > 0 we have |k — [ 4+ n| = k — [ + n. Hence
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Finally, let £ <[ —n. Then
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Since the five cases were mutually exclusive, we have
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when a # p;. If @ = p; the last term in the parentheses is not defined, but it can be defined
continuously by the limit as @ — p;. To see this define g : (—1,1) — R as follows
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where the second equality follows from the L’hospital rule. Substituting this result into
E [r?tr?t +n] and setting o = p; produces the result given in the theorem. W

Proof of Theorem 6.

Deriving the mean of 79, is straightforward. Taking expectations of both sides of (3.17)
we have

E [r,gt] = My + (1 - pn)ﬁn ZPEE [At—k] 3

since A;_; has a zero unconditional mean.
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To derive the variance of r%, we first compute the second uncentered moment:
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from which Var [r2,] follows since Var [z] = E [22] — (E [z])*.
The proofs of the formulas for autocovariance and cross-autocovariance are very similar

to those for individual returns and thus we leave them to the reader for the sake of brevity.
[
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