Detail práce

The LSTM approach for Value at Risk prediction

Autor: Bc. Nikanor Goreglyad
Rok: 2021 - letní
Vedoucí: Marek Hauzr
Konzultant:
Typ práce: Bakalářská
Jazyk: Anglicky
Stránky: 78
Ocenění:
Odkaz: https://dspace.cuni.cz/handle/20.500.11956/147936
Abstrakt: This thesis describes a new Value at Risk forecasting method based on a neural
network with Long Short-term Memory architecture trained with Joint Supervision loss function (JS LSTM). By optimizing the number of data points on
both sides of the predicted value, JS LSTM produces VaR prediction for a
given confidence level. The JS LSTM is trained to predict one-day-ahead VaR
for PX, WIG20, BUX, and SAX market indexes. The result was compared
with FIGARCH model, EVT-POT model, and LSTM model trained with realized VaR. The performance evaluation shows that the proposed model has
marginally better performance than benchmark models in periods of normal
volatility but underperform in periods of increased volatility.
Červen 2023
poútstčtsone
   1234
567891011
12131415161718
19202122232425
2627282930  

Partneři

Deloitte
Česká Spořitelna

Sponzoři

CRIF
McKinsey
Patria Finance
EY